Solveeit Logo

Question

Question: If \({a_1},{a_2},{a_3},..........,{a_n}\)are in H.P and\(f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}...

If a1,a2,a3,..........,an{a_1},{a_2},{a_3},..........,{a_n}are in H.P andf(k)=r=1narakf(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} , then a1f(1),a2f(2),a3f(3),.........,anf(n)\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},\dfrac{{{a_3}}}{{f(3)}},.........,\dfrac{{{a_n}}}{{f(n)}} are in:
A) A.P.
B) G.P.
C) H.P.
D) None of them.

Explanation

Solution

An Arithmetic Progression or Arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
A Harmonic Progression (H.P) is a progression formed by taking reciprocals of an Arithmetic Progression (A.P).
H.P=1A.PH.P = \dfrac{1}{{A.P}}
A sequence is a set of numbers which are written in some particular order. Basically sequences are of two types: finite (1,3,5,71,3,5,7) and infinite (Sn=a1+a2+.......+an{S_n} = {a_1} + {a_2} + ....... + {a_n}) .
A series is a sum of the terms in a sequence. If there are nnterms in the sequence and we evaluate the sum then we often write Sn{S_n} for the result, so that Sn=a1+a2+.......+an{S_n} = {a_1} + {a_2} + ....... + {a_n}.
Sn=a1+a2+.......+an{S_n} = {a_1} + {a_2} + ....... + {a_n}.

Complete step-by-step answer:
Given that a1,a2,a3,..........,an{a_1},{a_2},{a_3},..........,{a_n}are in H.P
As we know that H.P=1A.PH.P = \dfrac{1}{{A.P}}
1a1,1a2,1a3,.........,1an\therefore \dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}are inA.P.A.P.……………..(i)
We are given thatf(K)=r=1narakf(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}}
Asr=1nar=Sn\sum\limits_{r = 1}^n {{a_r}} = {S_n}, so we can rewrite the above equation as:
f(k)=r=1narak=Snak.f(k) = \sum\limits_{r = 1}^n {{a_r} - {a_k}} = {S_n} - {a_k}.
f(k)ak1k=1,2,3,.....,n\Rightarrow \dfrac{{f(k)}}{{{a_k}}} - 1\forall k = 1,2,3,.....,n……………….(ii)
As from (i) 1a1,1a2,1a3,.........,1an\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}}are inA.P.A.P.
a1+a2+......+ana1,a1+a2+......+ana2,.......,a1+a2+......+anan\Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}}are inA.P.A.P.
Now we subtract 1 from each term:
a1+a2+......+ana11,a1+a2+......+ana21,.......,a1+a2+......+anan1\Rightarrow \dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_1}}} - 1,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_2}}} - 1,.......,\dfrac{{{a_1} + {a_2} + ...... + {a_n}}}{{{a_n}}} - 1are inA.P.A.P.
By taking L.C.M of each term separately and on further solving
a2+......+ana1,a1+......+ana2,.......,a1+a2+......+an1an\Rightarrow \dfrac{{{a_2} + ...... + {a_n}}}{{{a_1}}},\dfrac{{{a_1} + ...... + {a_n}}}{{{a_2}}},.......,\dfrac{{{a_1} + {a_2} + ...... + {a_{n - 1}}}}{{{a_n}}} are inA.P.A.P.……….(iii)
Now we can write a2+a3+........+an=f(1),a1+a3+........+an=f(2),...........,a1+a2+.......+an1=f(n){a_2} + {a_{3 + }}........ + {a_n} = f(1),{a_1} + {a_3} + ........ + {a_n} = f(2),...........,{a_1} + {a_2} + ....... + {a_{n - 1}} = f(n)
So we can write the equation (iii) as f(1)a1,f(2)a2,..........,f(n)an\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}} are inA.P.A.P.
AsH.P=1A.PH.P = \dfrac{1}{{A.P}}
Therefore, a1f(1),a2f(2),.........,anf(n)\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}}are in H.P.H.P.

Hence option C is the correct answer.

Note: Alternative Method:
We are given that: f(K)=r=1narakf(K) = \sum\limits_{r = 1}^n {{a_r} - {a_k}}
It can be further written as that f(K)=[r=1nar]ak=Snakf(K) = [\sum\limits_{r = 1}^n {{a_r}] - {a_k} = {S_n} - {a_k}}
Now, f(k)ak=Snak1\dfrac{{f(k)}}{{{a_k}}} = \dfrac{{{S_n}}}{{{a_k}}} - 1
Also, it is given that a1,a2,a3,..........,an{a_1},{a_2},{a_3},..........,{a_n}are in H.P
So, 1a1,1a2,1a3,.........,1an\dfrac{1}{{{a_1}}},\dfrac{1}{{{a_2}}},\dfrac{1}{{{a_3}}},.........,\dfrac{1}{{{a_n}}} are in A.P.A.P.
Multiply each term with Sn{S_n} we get,
Sna1,Sna2,Sna3,.........,Snan\dfrac{{{S_n}}}{{{a_1}}},\dfrac{{{S_n}}}{{{a_2}}},\dfrac{{{S_n}}}{{{a_3}}},.........,\dfrac{{{S_n}}}{{{a_n}}} are in A.P.A.P.
Subtracting 1 from each term we get,
Sna11,Sna21,Sna31,.........,Snan1\dfrac{{{S_n}}}{{{a_1}}} - 1,\dfrac{{{S_n}}}{{{a_2}}} - 1,\dfrac{{{S_n}}}{{{a_3}}} - 1,.........,\dfrac{{{S_n}}}{{{a_n}}} - 1 are inA.P.A.P.
f(1)a1,f(2)a2,..........,f(n)an\dfrac{{f(1)}}{{{a_1}}},\dfrac{{f(2)}}{{{a_2}}},..........,\dfrac{{f(n)}}{{{a_n}}} are in A.P.A.P.
As H.P=1A.PH.P = \dfrac{1}{{A.P}}
Therefore, a1f(1),a2f(2),.........,anf(n)\dfrac{{{a_1}}}{{f(1)}},\dfrac{{{a_2}}}{{f(2)}},.........,\dfrac{{{a_n}}}{{f(n)}} are in H.P.H.P.
Hence the option C is the correct answer.