Solveeit Logo

Question

Mathematics Question on Determinants

If a1,a2,a3,......,ana_1, a_2, a_3,......, a_n ,.... are in G.P., then the value of the determinant loganlogan+1logan+2 logan+3logan+4logan+5 logan+6logan+7logan+8\begin{vmatrix}\log a_{n}& \log a_{n+1}&\log a_{n+2}\\\ \log a_{n+3}& \log a_{n+4}&\log a_{n+5}\\\ \log a_{n+6} &\log a_{n+7}& \log a_{n+8}\end{vmatrix} , is

A

-2

B

1

C

2

D

0

Answer

0

Explanation

Solution

Let r be the common ratio, then loganlogan+1logan+2 logan+3logan+4logan+5 logan+6logan+7logan+8\begin{vmatrix}\log a_{n}& \log a_{n+1}&\log a_{n+2}\\\ \log a_{n+3}& \log a_{n+4}&\log a_{n+5}\\\ \log a_{n+6} &\log a_{n+7}& \log a_{n+8}\end{vmatrix} =loga1rn1loga1rnloga1rn+1 loga1rn+2loga1rn+3loga1rn+4 loga1rn+5loga1rn+6loga1rn+7= \begin{vmatrix}\log a_{1}r^{n-1}&\log a_{1}r^{n}&\log a_{1}r^{n+1}\\\ \log a_{1}r^{n+2} &\log a_{1}r^{n+3}&\log a_{1}r^{n+4}\\\ \log a_{1}r^{n+5} &\log a_{1}r^{n+6}&\log a_{1}r^{n+7}\end{vmatrix} =loga1+(n1)logrloga1+nlogrloga1(n+1)logr loga1+(n+2)logrloga1+(n+3)logrloga1+(n+4)logr loga1+(n+5)logrloga1+(n+6)logrloga2+(n+7)logr = \begin{vmatrix}\log a_{1} +\left(n-1\right)\log r&\log a_{1}+n \log r&\log a_{1}\left(n+1\right)\log r\\\ \log a_{1}+\left(n+2\right)\log r & \log a_{1} +\left(n+3\right)\log r&\log a_{1}+\left(n+4\right)\log r\\\ \log a_{1}+\left(n+5\right)\log r &\log a_{1}+\left(n+6\right)\log r&\log a_{2} +\left(n+7\right)\log r \end{vmatrix} =0[Applyc2c212c112c3]= 0 \left[ \text{Apply}\, c_2 \to c_2 - \frac{1}{2} c_1 - \frac{1}{2} c_3 \right]