Solveeit Logo

Question

Question: If \({{a}_{1}},{{a}_{2}},{{a}_{3}}......{{a}_{n-1}},{{a}_{n}}\) are in A.P., then show that \(\dfrac...

If a1,a2,a3......an1,an{{a}_{1}},{{a}_{2}},{{a}_{3}}......{{a}_{n-1}},{{a}_{n}} are in A.P., then show that 1a1an+1a2an1+1a3an2............1ana1=2(a1+an)[1a1+1a2+.....1an]\dfrac{1}{{{a}_{1}}{{a}_{n}}}+\dfrac{1}{{{a}_{2}}{{a}_{n-1}}}+\dfrac{1}{{{a}_{3}}{{a}_{n-2}}}............\dfrac{1}{{{a}_{n}}{{a}_{1}}}=\dfrac{2}{\left( {{a}_{1}}+{{a}_{n}} \right)}\left[ \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}+.....\dfrac{1}{{{a}_{n}}} \right]

Explanation

Solution

To solve this question we need to have a knowledge of Arithmetic Progression. The series is said to be in A.P. when the common difference between the consecutive terms is the same for the terms given in the question. Fraction equal part of a whole collection.

Complete step-by-step answer:
The question ask us to prove 1a1an+1a2an1+1a3an2............1ana1=2(a1+an)[1a1+1a2+.....1an]\dfrac{1}{{{a}_{1}}{{a}_{n}}}+\dfrac{1}{{{a}_{2}}{{a}_{n-1}}}+\dfrac{1}{{{a}_{3}}{{a}_{n-2}}}............\dfrac{1}{{{a}_{n}}{{a}_{1}}}=\dfrac{2}{\left( {{a}_{1}}+{{a}_{n}} \right)}\left[ \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}+.....\dfrac{1}{{{a}_{n}}} \right], when the terms a1,a2,a3......an1,an{{a}_{1}},{{a}_{2}},{{a}_{3}}......{{a}_{n-1}},{{a}_{n}} are in Arithmetic Progression. The first step for the proving is to take some assumptions. The assumption that is needed to be considered is:
Let the sum of first and the last term, second and the second last term, third and the third last term be a constant kk. On writing the above explanation in the mathematical form, we get:
a1+an=a2+an1=a3+an2=k\Rightarrow {{a}_{1}}+{{a}_{n}}={{a}_{2}}+{{a}_{n-1}}={{a}_{3}}+{{a}_{n-2}}=k
Now, considering the reciprocal of the product of the first and the last term, second and the second last term likewise we need to apply certain operation on it. Multiplying the term, 1a1an\dfrac{1}{{{a}_{1}}{{a}_{n}}}with a1+an{{a}_{1}}+{{a}_{n}} both in the numerator and the denominator, we get:
1a1an=a1+an(a1+an)a1an=1a1+an(1a1+1an)\Rightarrow \dfrac{1}{{{a}_{1}}{{a}_{n}}}=\dfrac{{{a}_{1}}+{{a}_{n}}}{\left( {{a}_{1}}+{{a}_{n}} \right){{a}_{1}}{{a}_{n}}}=\dfrac{1}{{{a}_{1}}+{{a}_{n}}}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{n}}} \right)
Substituting the terms in addition with “k” we get:
1a1an=1k(1a1+1an)\Rightarrow \dfrac{1}{{{a}_{1}}{{a}_{n}}}=\dfrac{1}{k}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{n}}} \right)
So, on calculating the sum for all the terms given in the question we get:
1a1an+1a2an1+.........+1ana1\dfrac{1}{{{a}_{1}}{{a}_{n}}}+\dfrac{1}{{{a}_{2}}{{a}_{n-1}}}+.........+\dfrac{1}{{{a}_{n}}{{a}_{1}}}
Substituting the value on the above expression we get the following expression:
1k(1a1+1an)+1k(1a2+1an1)+........1k(1a1+1an)\Rightarrow \dfrac{1}{k}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{n}}} \right)+\dfrac{1}{k}\left( \dfrac{1}{{{a}_{2}}}+\dfrac{1}{{{a}_{n-1}}} \right)+........\dfrac{1}{k}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{n}}} \right)
Now taking the terms common, the above expression turns to be:
2k(1a1+1an+1a2+1an1........)\Rightarrow \dfrac{2}{k}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{n}}}+\dfrac{1}{{{a}_{2}}}+\dfrac{1}{{{a}_{n-1}}}........ \right)
Substituting the value of “k” with the terms above we get the following expression:
2a1+a2(1a1+1a2+......+1an)\Rightarrow \dfrac{2}{{{a}_{1}}+{{a}_{2}}}\left( \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}+......+\dfrac{1}{{{a}_{n}}} \right)
\therefore The expression 1a1an+1a2an1+1a3an2............1ana1=2(a1+an)[1a1+1a2+.....1an]\dfrac{1}{{{a}_{1}}{{a}_{n}}}+\dfrac{1}{{{a}_{2}}{{a}_{n-1}}}+\dfrac{1}{{{a}_{3}}{{a}_{n-2}}}............\dfrac{1}{{{a}_{n}}{{a}_{1}}}=\dfrac{2}{\left( {{a}_{1}}+{{a}_{n}} \right)}\left[ \dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}+.....\dfrac{1}{{{a}_{n}}} \right] is hence proved.

Note: To check whether the series is in Arithmetic Progression or not, check the common difference. Common Difference refers to the difference between the two consecutive terms in the series.