Question
Mathematics Question on Sequence and series
If a1,a2,a3,a4 are in A.P., then a1+a21+a2+a31+a3+a41=
A
a3−a2a4−a1
B
a3−a2a4−a1
C
a4−a1a3−a2
D
a3−a2a1−a4
Answer
a3−a2a4−a1
Explanation
Solution
a1+a21+a2+a31+a3+a41
=(a1+a2)(a1−a2)a1−a2
+(a2+a3)(a2−a3)a2−a3+(a3+a4)(a3−a4)a3−a4
[by rationalisation]
=a1−a2a1−a2+a2−a3a2−a3+a3−a4a3−a4
∵a1,a2,a3 and a4 are in AP.
∴a2−a1=a3−a2=a4−a3
or
a1−a2=a2−a3=a3−a4
Thus, a1+a21+a2+a31+a3+a41
=a1−a2a1−a2+a1−a2a2−a3+a1−a2a3−a4
=(a1−a2)(a1−a2)+(a2−a3)+(a3−a4)=a1−a2−a4+a1
=a2−a1a4−a1=a3−a2a4−a1