Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1,a2,a3,a4a_1, a_2 , a_3 , a_4 are in A.P., then 1a1+a2+1a2+a3+1a3+a4=\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}=

A

a4a1a3a2\frac{\sqrt{a_{4}}-\sqrt{a_{1}}}{a_{3-a_2}}

B

a4a1a3a2\frac{a_{4}-a_{1}}{a_{3}-a_{2}}

C

a3a2a4a1\frac{a_{3}-a_{2}}{\sqrt{a_{4}}-\sqrt{a_{1}}}

D

a1a4a3a2\frac{a_{1}-a_{4}}{a_{3}-a_{2}}

Answer

a4a1a3a2\frac{\sqrt{a_{4}}-\sqrt{a_{1}}}{a_{3-a_2}}

Explanation

Solution

1a1+a2+1a2+a3+1a3+a4\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}
=a1a2(a1+a2)(a1a2)=\frac{\sqrt{a}_{1}-\sqrt{a_{2}}}{\left(\sqrt{a_{1}}+\sqrt{a_{2}}\right)\left(\sqrt{a_{1}}-\sqrt{a_{2}}\right)}
+a2a3(a2+a3)(a2a3)+a3a4(a3+a4)(a3a4)+\frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{\left(\sqrt{a_{2}}+\sqrt{a_{3}}\right)\left(\sqrt{a_{2}}-\sqrt{a_{3}}\right)}+\frac{\sqrt{a_{3}}-\sqrt{a_{4}}}{\left(\sqrt{a}_{3}+\sqrt{a_{4}}\right)\left(\sqrt{a_{3}}-\sqrt{a_{4}}\right)}
[by rationalisation]
=a1a2a1a2+a2a3a2a3+a3a4a3a4=\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{a_{1}-a_{2}}+\frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{a_{2}-a_{3}}+\frac{\sqrt{a_{3}}-\sqrt{a_{4}}}{a_{3}-a_{4}}
a1,a2,a3\because a_{1}, a_{2}, a_{3} and a4a_{4} are in AP.
a2a1=a3a2=a4a3\therefore a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}
or
a1a2=a2a3=a3a4a_{1}-a_{2}=a_{2}-a_{3}=a_{3}-a_{4}
Thus, 1a1+a2+1a2+a3+1a3+a4\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}
=a1a2a1a2+a2a3a1a2+a3a4a1a2=\frac{\sqrt{a_{1}}-\sqrt{a_{2}}}{a_{1}-a_{2}}+\frac{\sqrt{a_{2}}-\sqrt{a_{3}}}{a_{1}-a_{2}}+\frac{\sqrt{a_{3}}-\sqrt{a_{4}}}{a_{1}-a_{2}}
=(a1a2)+(a2a3)+(a3a4)(a1a2)=a4+a1a1a2=\frac{\left(\sqrt{a_{1}}-\sqrt{a_{2}}\right)+\left(\sqrt{a_{2}}-\sqrt{a_{3}}\right)+\left(\sqrt{a_{3}}-\sqrt{a_{4}}\right)}{\left(a_{1}-a_{2}\right)}=\frac{-\sqrt{a_{4}}+\sqrt{a_{1}}}{a_{1}-a_{2}}
=a4a1a2a1=a4a1a3a2=\frac{\sqrt{a_{4}}-\sqrt{a_{1}}}{a_{2}-a_{1}}=\frac{\sqrt{a_{4}}-\sqrt{a_{1}}}{a_{3}-a_{2}}