Solveeit Logo

Question

Question: If \[{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}}\] are in arithmetic progression. Prove that...

If a1,a2,a3........,an{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}} are in arithmetic progression. Prove that1a1a2+1a2a3+.........+1an1an=n1an1an\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}.

Explanation

Solution

If a,b,ca,b,c are in arithmetic progression,
b=a+c2b=\dfrac{a+c}{2}
b=a+d=cdb=a+d=c-d
c=b+d=a+2dc=b+d=a+2d
Here, ‘d’ is called the common difference of the arithmetic progression.
d=cb=bad=c-b=b-a
The general term in an arithmetic progression can be written as an=a+(n1)d{{a}_{n}}=a+(n-1)d.

Complete step by step answer:
We are given, a1,a2,a3........,an{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}} are in arithmetic progression.
We have to prove that 1a1a2+1a2a3+.........+1an1an=n1an1an\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}.
LHS=1a1a2+1a2a3+.........+1an1an=\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}
We know that, a2=a1+d,a3=a2+d,a4=a3+d{{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d and so on.
Hence,
LHS=1a1(a1+d)+1a2(a2+d)+.........+1an1(an1+d)=\dfrac{1}{{{a}_{1}}({{a}_{1}}+d)}+\dfrac{1}{{{a}_{2}}({{a}_{2}}+d)}+\,.........\,+\dfrac{1}{{{a}_{n-1}}({{a}_{n-1}}+d)}
Each term in the LHS is of the form 1a(a+d)\dfrac{1}{a(a+d)} . Multiplying numerator and denominator by dd we get each terms in the form 1d(da(a+d))\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right) . Now we can split each terms of the LHS as 1d(da(a+d))=1d(1a1a+d)\dfrac{1}{d}\left( \dfrac{d}{a(a+d)} \right)=\dfrac{1}{d}\left( \dfrac{1}{a}-\dfrac{1}{a+d} \right) .
Hence, the LHS becomes,
LHS=1d(1a11a1+d)+1d(1a21a2+d)+.......+1d(1an11an1+d)=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d} \right)+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d} \right)+.......+\dfrac{1}{d}\left( \dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)
1d\dfrac{1}{d}is common for all the terms in the LHS. Hence, on taking the common term outside we get,
LHS=1d(1a11a1+d+1a21a2+d+.......+1an11an1+d)=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}+d}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{2}}+d}+.......+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n-1}}+d} \right)
We know that, a2=a1+d,a3=a2+d,a4=a3+d{{a}_{2}}={{a}_{1}}+d,\,{{a}_{3}}={{a}_{2}}+d,\,{{a}_{4}}={{a}_{3}}+d and so on.
On substituting the above in the LHS, we get,
LHS=1d(1a11a1+1a21a3+.......+1an21an1+1an11an)=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}-\dfrac{1}{{{a}_{3}}}+.......+\dfrac{1}{{{a}_{n-2}}}-\dfrac{1}{{{a}_{n-1}}}+\dfrac{1}{{{a}_{n-1}}}-\dfrac{1}{{{a}_{n}}} \right)
=1d(1a11an)=\dfrac{1}{d}\left( \dfrac{1}{{{a}_{1}}}-\dfrac{1}{{{a}_{n}}} \right)
On taking LCM, we get,
LHS=1d(ana1a1an)=\dfrac{1}{d}\left( \dfrac{{{a}_{n}}-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)
We know that, an=a1+(n1)d{{a}_{n}}={{a}_{1}}+(n-1)d
Substituting an=a1+(n1)d{{a}_{n}}={{a}_{1}}+(n-1)d in LHS, we obtain,
LHS=1d(a1+(n1)da1a1an)=\dfrac{1}{d}\left( \dfrac{{{a}_{1}}+(n-1)d-{{a}_{1}}}{{{a}_{1}}{{a}_{n}}} \right)
=1d((n1)da1an)=\dfrac{1}{d}\left( \dfrac{(n-1)d}{{{a}_{1}}{{a}_{n}}} \right)
=n1a1an=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}}
\therefore LHS=n1a1an=\dfrac{n-1}{{{a}_{1}}{{a}_{n}}} = RHS
That is, LHS=RHS.
Hence, we have proved that 1a1a2+1a2a3+.........+1an1an=n1an1an\dfrac{1}{{{a}_{1}}{{a}_{2}}}+\dfrac{1}{{{a}_{2}}{{a}_{3}}}+\,.........\,+\dfrac{1}{{{a}_{n-1}}{{a}_{n}}}=\dfrac{n-1}{{{a}_{n-1}}{{a}_{n}}}.

Note: Similar questions can be asked in terms of the progression being even geometric and harmonic. In other words, the question can be, “If a1,a2,a3........,an{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}} are in geometric progression” or “If a1,a2,a3........,an{{a}_{1}},{{a}_{2}},{{a}_{3}}\,........\,,{{a}_{n}} are in harmonic progression”, solve the equation. In both cases, we can solve the question in a way similar to what we have already discussed.
We need only keep in mind some basic properties of geometric and harmonic progressions.
Some properties of geometric progression are:
Suppose a,b,ca,b,c are in G.P. Then,
b2=ac{{b}^{2}}=ac
b=ar=crb=ar=\dfrac{c}{r}
c=br=ar2c=br=a{{r}^{2}}
Here ‘rr’ is called the common ratio of the geometric.
Some properties of harmonic progression are:
Suppose a,b,ca,b,c are in H.P. Then,
1a+1c=2b\dfrac{1}{a}+\dfrac{1}{c}=\dfrac{2}{b}
The reciprocals of the terms in H.P are in arithmetic progression.
b=2aca+cb=\dfrac{2ac}{a+c}