Solveeit Logo

Question

Question: If \( {{a}_{1}},{{a}_{2}},{{a}_{3}},5,4,{{a}_{6}},{{a}_{7}},{{a}_{8}},{{a}_{9}} \) are in H.P. and \...

If a1,a2,a3,5,4,a6,a7,a8,a9{{a}_{1}},{{a}_{2}},{{a}_{3}},5,4,{{a}_{6}},{{a}_{7}},{{a}_{8}},{{a}_{9}} are in H.P. and D=a1a2a3 54a6 a7a8a9 D=\left| \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ 5 & 4 & {{a}_{6}} \\\ {{a}_{7}} & {{a}_{8}} & {{a}_{9}} \\\ \end{matrix} \right| , then find the value of 21D.

Explanation

Solution

Hint : Harmonic Progression (H.P.): The series of numbers where the reciprocals of the terms are in Arithmetic Progression, is called a Harmonic Progression.
i.e. if a, b and c are in H.P., then 1a\dfrac{1}{a} , 1b\dfrac{1}{b} and 1c\dfrac{1}{c} are in A.P., and vice versa.
Find the common difference of the A.P. using the values of a4=5{{a}_{4}}=5 and a5=4{{a}_{5}}=4 , and then the values of all the remaining terms.
Use these values to find the value of the given determinant D. Refer to the properties of determinants given in Note.

Complete step-by-step answer :
Let's say that the A.P. is x1,x2,x3,15,14,x6,x7,x8,x9{{x}_{1}},{{x}_{2}},{{x}_{3}},\dfrac{1}{5},\dfrac{1}{4},{{x}_{6}},{{x}_{7}},{{x}_{8}},{{x}_{9}} , which are the reciprocals of the terms of the H.P. a1,a2,a3,5,4,a6,a7,a8,a9{{a}_{1}},{{a}_{2}},{{a}_{3}},5,4,{{a}_{6}},{{a}_{7}},{{a}_{8}},{{a}_{9}} .
Equating the denominators of x4=15{{x}_{4}}=\dfrac{1}{5} and x5=14{{x}_{5}}=\dfrac{1}{4} , we get:
a4=15=420{{a}_{4}}=\dfrac{1}{5}=\dfrac{4}{20} and a5=14=520{{a}_{5}}=\dfrac{1}{4}=\dfrac{5}{20} , with a common difference of d=a5a4=120d={{a}_{5}}-{{a}_{4}}=\dfrac{1}{20} .
So, the 9 terms of the A.P. must be 120,220,320,420,520,620,720,820,920\dfrac{1}{20},\dfrac{2}{20},\dfrac{3}{20},\dfrac{4}{20},\dfrac{5}{20},\dfrac{6}{20},\dfrac{7}{20},\dfrac{8}{20},\dfrac{9}{20} .
And the H.P. is: 201,202,203,204,205,206,207,208,209\dfrac{20}{1},\dfrac{20}{2},\dfrac{20}{3},\dfrac{20}{4},\dfrac{20}{5},\dfrac{20}{6},\dfrac{20}{7},\dfrac{20}{8},\dfrac{20}{9} .
Substituting these values in D=a1a2a3 54a6 a7a8a9 D=\left| \begin{matrix} {{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\\ 5 & 4 & {{a}_{6}} \\\ {{a}_{7}} & {{a}_{8}} & {{a}_{9}} \\\ \end{matrix} \right| , we get:
D=201202203 204205206 207208209 D=\left| \begin{matrix} \dfrac{20}{1} & \dfrac{20}{2} & \dfrac{20}{3} \\\ \dfrac{20}{4} & \dfrac{20}{5} & \dfrac{20}{6} \\\ \dfrac{20}{7} & \dfrac{20}{8} & \dfrac{20}{9} \\\ \end{matrix} \right|
Using the transformations R1R120, R2R220, R3R320{{R}_{1}}\to \dfrac{{{R}_{1}}}{20},\ {{R}_{2}}\to \dfrac{{{R}_{2}}}{20},\ {{R}_{3}}\to \dfrac{{{R}_{3}}}{20} , we get:
D203=11213 141516 171819 \dfrac{D}{{{20}^{3}}}=\left| \begin{matrix} 1 & \dfrac{1}{2} & \dfrac{1}{3} \\\ \dfrac{1}{4} & \dfrac{1}{5} & \dfrac{1}{6} \\\ \dfrac{1}{7} & \dfrac{1}{8} & \dfrac{1}{9} \\\ \end{matrix} \right|
Using the transformations C22C2, C33C3{{C}_{2}}\to 2{{C}_{2}},\ {{C}_{3}}\to 3{{C}_{3}} , we get:
D×2×3203=111 142512 171413 \dfrac{D\times 2\times 3}{{{20}^{3}}}=\left| \begin{matrix} 1 & 1 & 1 \\\ \dfrac{1}{4} & \dfrac{2}{5} & \dfrac{1}{2} \\\ \dfrac{1}{7} & \dfrac{1}{4} & \dfrac{1}{3} \\\ \end{matrix} \right|
Using the transformations C2C2C1, C3C3C1{{C}_{2}}\to {{C}_{2}}-{{C}_{1}},\ {{C}_{3}}\to {{C}_{3}}-{{C}_{1}} , we get:
6D203=100 1432014 17328421 \dfrac{6D}{{{20}^{3}}}=\left| \begin{matrix} 1 & 0 & 0 \\\ \dfrac{1}{4} & \dfrac{3}{20} & \dfrac{1}{4} \\\ \dfrac{1}{7} & \dfrac{3}{28} & \dfrac{4}{21} \\\ \end{matrix} \right|
Expanding along R1{{R}_{1}} , we get:
6D203=1[(320)(421)(328)(14)]+0+0\dfrac{6D}{{{20}^{3}}}=1\left[ \left( \dfrac{3}{20} \right)\left( \dfrac{4}{21} \right)-\left( \dfrac{3}{28} \right)\left( \dfrac{1}{4} \right) \right]+0+0
6D203=15×7316×7\dfrac{6D}{{{20}^{3}}}=\dfrac{1}{5\times 7}-\dfrac{3}{16\times 7}
Equating the denominators on the R.H.S., we get:
6D203=165×16×7155×16×7\dfrac{6D}{{{20}^{3}}}=\dfrac{16}{5\times 16\times 7}-\dfrac{15}{5\times 16\times 7}
6D203=15×16×7\dfrac{6D}{{{20}^{3}}}=\dfrac{1}{5\times 16\times 7}
D=2035×6×16×7D=\dfrac{{{20}^{3}}}{5\times 6\times 16\times 7}
Multiplying both sides by 21, we get:
21D=203×215×6×16×721D=\dfrac{{{20}^{3}}\times 21}{5\times 6\times 16\times 7}
Simplifying it by cancelling out the common factors, we get:
21D=5021D=50 , which is the required answer.
So, the correct answer is “50”.

Note : Arithmetic Progression (A.P.): The series of numbers where the difference of any two consecutive terms is the same, is called an Arithmetic Progression.
If a be the first term, d be the common difference and n be the number of terms of an AP, then the sequence can be written as follows:
a, a+d, a+2d, ..., a+(n1)da,\ a+d,\ a+2d,\ ...,\ a+(n-1)d
Properties of determinants:
The determinant of a diagonal matrix is the product of the diagonal entries.
If A and B are both n×nn\times n matrices, then det(AB)=det(A)det(B)det(AB)=det(A)det(B) .
For a n×nn\times n matrix A, det(kA)=kndet(A)det(kA)={{k}^{n}}det(A) .
The determinant of a square matrix is the same as the determinant of its transpose.