Solveeit Logo

Question

Mathematics Question on Sequence and series

If a1_1 = 4 and an+1=an+4nforn1.a_{n+1}=a_{n}+4n\quad for\quad n\ge1. then the value of a100_{100} is

A

19804

B

18904

C

18894

D

19904

Answer

19804

Explanation

Solution

The correct answer is A:19804
Given that: a1=4,an+1=an+4n,a_1=4, a_{n+1}=a_n+4n ,
\therefore for n=1=a2a1=4×1n=1=a_2-a_1=4\times1 [an+1an=4n]\therefore [a_{n+1}-a_n=4n]
for n=2=a3a2=4×2n=2=a_3-a_2=4\times2
\therefore for n=99=a100a99=4×99n=99=a_{100}-a_{99}=4\times99
So, we get
a100a1=4(1+2+.....+99)a_{100}-a_1=4 (1+2+.....+99)(on adding)
a100=4+4×99(99+1)2a_{100}=4+4\times\frac{99(99+1)}{2}
a100=19804a_{100}=19804