Solveeit Logo

Question

Question: If A(1,-2,-1) , B(4,0,-3) ,C(1,2,-1) ,D(2,-4,-5) ,Find the distance between AB and CD....

If A(1,-2,-1) , B(4,0,-3) ,C(1,2,-1) ,D(2,-4,-5) ,Find the distance between AB and CD.

Explanation

Solution

Start by preparing the equation of AB and CD in cartesian form. Take points P and Q on AB and CD respectively, find the equation of line PQ . Use the product rule for PQ perpendicular to AB and CD in order to find out coordinates of P and Q. Use the distance formula between P and Q.

Complete step-by-step answer :
Given,
A(1, - 2, - 1) , B(4,0, - 3) ,C(1,2, - 1) ,D(2, - 4, - 5){\text{A}}\left( {{\text{1, - 2, - 1}}} \right){\text{ , B}}\left( {{\text{4,0, - 3}}} \right){\text{ ,C}}\left( {{\text{1,2, - 1}}} \right){\text{ ,D}}\left( {{\text{2, - 4, - 5}}} \right)
Let us start by finding the equation of line AB and CD
We know equation of line joining two points is given by
xx1x2x1 = yy1y2y1 = zz1z2z1\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}{\text{ = }}\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}}{\text{ = }}\dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}
So, Equation of AB  = x141 = y+20+2 = z+13+1{\text{ = }}\dfrac{{x - 1}}{{4 - 1}}{\text{ = }}\dfrac{{y + 2}}{{0 + 2}}{\text{ = }}\dfrac{{z + 1}}{{ - 3 + 1}}
AB = x13 = y+22 = z+12\Rightarrow {\text{AB = }}\dfrac{{x - 1}}{3}{\text{ = }}\dfrac{{y + 2}}{2}{\text{ = }}\dfrac{{z + 1}}{{ - 2}}
Let us take a point P on AB
p = x13 = y+22 = z+12 x=3p+1,y=2p2,z=2p1 P(3p+1,2p2,2p1)  {\text{p = }}\dfrac{{x - 1}}{3}{\text{ = }}\dfrac{{y + 2}}{2}{\text{ = }}\dfrac{{z + 1}}{{ - 2}} \\\ \Rightarrow x = 3p + 1,y = 2p - 2,z = - 2p - 1 \\\ \therefore {\text{P(}}3p + 1,2p - 2, - 2p - 1) \\\
Similarly, Equation of CD= x121 = y242 = z+15+1\dfrac{{x - 1}}{{2 - 1}}{\text{ = }}\dfrac{{y - 2}}{{ - 4 - 2}}{\text{ = }}\dfrac{{z + 1}}{{ - 5 + 1}}
CD = x11 = y26 = z+14\Rightarrow {\text{CD = }}\dfrac{{x - 1}}{1}{\text{ = }}\dfrac{{y - 2}}{{ - 6}}{\text{ = }}\dfrac{{z + 1}}{{ - 4}}
Let us take a point Q on CD
q= = x11 = y26 = z+14 x=q+1,y=6q+2,z=4q1 Q(q+1,6q+2,4q1)  q = {\text{ = }}\dfrac{{x - 1}}{1}{\text{ = }}\dfrac{{y - 2}}{{ - 6}}{\text{ = }}\dfrac{{z + 1}}{{ - 4}} \\\ \Rightarrow x = q + 1,y = - 6q + 2,z = - 4q - 1 \\\ \therefore Q(q + 1, - 6q + 2, - 4q - 1) \\\
Direction ratios of PQ  = (3pq,2p+6q4,2p+4q){\text{ = (}}3p - q,2p + 6q - 4, - 2p + 4q)
Now we know that PQAB{\text{PQ}} \bot {\text{AB}}
So the sum of products of direction ratios will be equal to zero
3(3pq)+2(2p+6q4)2(2p+4q)=0 9p3q+4p+12q8+4p8q=0 17p+q8=0eqn(1)  3(3p - q) + 2(2p + 6q - 4) - 2( - 2p + 4q) = 0 \\\ 9p - 3q + 4p + 12q - 8 + 4p - 8q = 0 \\\ 17p + q - 8 = 0 \to eqn(1) \\\

Similarly, PQCD{\text{PQ}} \bot {\text{CD}}
1(3pq)6(2p+6q4)4(2p+4q)=0 3pq12p36q+24+8p16q=0 \-p53q+24=0eqn(2)  1(3p - q) - 6(2p + 6q - 4) - 4( - 2p + 4q) = 0 \\\ 3p - q - 12p - 36q + 24 + 8p - 16q = 0 \\\ \- p - 53q + 24 = 0 \to eqn(2) \\\
Solving, 17(eqn. 2) + eqn. 1 , we get
p=49p = \dfrac{4}{9}
Substituting in eqn. 1 , we get
q=49q = \dfrac{4}{9}
P(49+1,2×492,(2)×491) P(219,109,179)  \Rightarrow {\text{P(}}\dfrac{4}{9} + 1,\dfrac{{2 \times 4}}{9} - 2,\dfrac{{( - 2) \times 4}}{9} - 1) \\\ \therefore {\text{P(}}\dfrac{{21}}{9},\dfrac{{ - 10}}{9},\dfrac{{ - 17}}{9}) \\\
Similarly, Q(139,69,259){\text{Q(}}\dfrac{{13}}{9},\dfrac{{ - 6}}{9},\dfrac{{ - 25}}{9})
Here we are not simplifying some of the terms of P and Q , so that the calculation is easy and fast , it won’t affect the result even if we simplify them.
Applying, distance formula between PQ , because it will be equal to the distance between AB and CD
S = (x2x1)2+(y2y1)2+(z2z1)2 S = (219139)2+(109+69)2+(179+259)2 S = (89)2+(49)2+(89)2 S = 6481+1681+6481 S = 14481 S = 43units.  {\text{S = }}\sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2} + {{({z_2} - {z_1})}^2}} \\\ {\text{S = }}\sqrt {{{\left( {\dfrac{{21}}{9} - \dfrac{{13}}{9}} \right)}^2} + {{\left( {\dfrac{{ - 10}}{9} + \dfrac{6}{9}} \right)}^2} + {{\left( {\dfrac{{ - 17}}{9} + \dfrac{{25}}{9}} \right)}^2}} \\\ {\text{S = }}\sqrt {{{\left( {\dfrac{8}{9}} \right)}^2} + {{\left( {\dfrac{{ - 4}}{9}} \right)}^2} + {{\left( {\dfrac{8}{9}} \right)}^2}} \\\ {\text{S = }}\sqrt {\dfrac{{64}}{{81}} + \dfrac{{16}}{{81}} + \dfrac{{64}}{{81}}} \\\ {\text{S = }}\sqrt {\dfrac{{144}}{{81}}} \\\ {\text{S = }}\dfrac{4}{3}{\text{units}}{\text{.}} \\\
Therefore the distance between AB and CD is 43units.\dfrac{4}{3}{\text{units}}{\text{.}}

Note : All the formulas must be known in both cartesian and vector form in order to solve such similar problems. Dot product and cross product must be practised thoroughly for convenience . Be attentive while substituting values with negative or positive signs, as small mistakes can lead you to the wrong answer.