Solveeit Logo

Question

Mathematics Question on Geometric Progression

If a 1 (> 0), a 2, a 3, a 4, a 5 are in a G.P., a 2 + a 4 = 2 a 3 + 1 and 3 a 2 + a 3 = 2 a 4, then a 2 + a 4 + 2 a 5 is equal to _______.

Answer

The correct answer is 40
Let G.P. be a 1 = a , a 2 = ar , a 3 = ar 2, ……
3a2+a3=2a4∵ 3a_2 + a_3 = 2a_4
3ar+ar2=2ar3⇒ 3ar + ar^2 = 2ar³
⇒ 2ar² - r - 3 = 0
∴ r = -1 or 32\frac{3}{2}
∵ a1 = a > 0 then r ≠ -1
Now,

a2+a4=2a3+1a_2 + a_4 = 2a_3 + 1
ar+ar3=2ar2+1ar + ar³ = 2ar² + 1
a(32+27892)=1a ( \frac{3}{2} + \frac{27}{8} - \frac{9}{2} ) = 1
a=83∴ a = \frac{8}{3}
83(32+278+818)∴ \frac{8}{3} ( \frac{3}{2} + \frac{27}{8} + \frac{81}{8} )
= 40