Solveeit Logo

Question

Question: If A \> 0, B \> 0 and A + B = \(\frac{\pi}{3}\) then the maximum value of tan A . tan B is –...

If A > 0, B > 0 and A + B = π3\frac{\pi}{3} then the maximum value of tan A . tan B is –

A

13\frac{1}{\sqrt{3}}

B

13\frac{1}{3}

C

3

D

3\sqrt{3}

Answer

13\frac{1}{3}

Explanation

Solution

When A + B = 600 \ B = 600 – A

\ tan B = tan (600 – A) = 3tanA1+3tanA\frac{\sqrt{3} - \tan A}{1 + \sqrt{3}\tan A}

Now z = tan A tan B

or z = t(3t)1+3t\frac{t(\sqrt{}3 - t)}{1 + \sqrt{}3t} = 3tt21+3t\frac{\sqrt{}3t - t^{2}}{1 + \sqrt{}3t}

where t = tan A

dzdt\frac{dz}{dt} = (t+3)(3t1)(1+3t)2\frac{(t + \sqrt{}3)(\sqrt{}3t - 1)}{(1 + \sqrt{}3t)^{2}} = 0

\ t = 1/Ö3

\ t = tan A = tan 300

\ B = 600 – A = 300

The other value is rejected as both A and B are +ive acute angles.

If t < 13\frac{1}{\sqrt{}3}, dzdt\frac{dz}{dt} = + ive and if t > 13\frac{1}{\sqrt{}3}, dzdt\frac{dz}{dt} = – ive.

Hence max. when t = 13\frac{1}{\sqrt{}3} and max. value = 13\frac{1}{3}.