Solveeit Logo

Question

Question: If a > 0 and \[z=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}\] , has magnitude \(\sqrt{\dfrac{2}{5}}\)th...

If a > 0 and z=(1+i)2aiz=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i} , has magnitude 25\sqrt{\dfrac{2}{5}}then z\overline{z} is equal to:
(a). 3515i-\dfrac{3}{5}-\dfrac{1}{5}i
(b). 15+35i-\dfrac{1}{5}+\dfrac{3}{5}i
(c). 1535i-\dfrac{1}{5}-\dfrac{3}{5}i
(d). 1535i\dfrac{1}{5}-\dfrac{3}{5}i

Explanation

Solution

While solving this question we will simplify the given z=(1+i)2aiz=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i} and using the magnitude of z is given as 25\sqrt{\dfrac{2}{5}} . This will give us the value of z and this will conclude as with the value of z\overline{z} as we know that zˉ=xiy\bar{z}=x-iy where z=x+iyz=x+iy.

Complete step by step answer:
From the question we have that
z=(1+i)2aiz=\dfrac{{{\left( 1+i \right)}^{2}}}{a-i}
We will now simplify this using i2=1{{i}^{2}}=-1 and (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
And after some simple modifications we will multiply and divide the whole equation with (a+i)\left( a+i \right).
z=1+i2+2iai z=11+2iai z=2iai(a+ia+i) z=2i(a+i)a2i2 z=2i(a+i)a2+1 z=2ai+2i2a2+1 z=2a2+1+i2aa2+1 \begin{aligned} & z=\dfrac{1+{{i}^{2}}+2i}{a-i} \\\ & \Rightarrow z=\dfrac{1-1+2i}{a-i} \\\ & \Rightarrow z=\dfrac{2i}{a-i}\left( \dfrac{a+i}{a+i} \right) \\\ & \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}-{{i}^{2}}} \\\ & \Rightarrow z=\dfrac{2i\left( a+i \right)}{{{a}^{2}}+1} \\\ & \Rightarrow z=\dfrac{2ai+2{{i}^{2}}}{{{a}^{2}}+1} \\\ & \Rightarrow z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1} \\\ \end{aligned}
Here we have the value of
z=2a2+1+i2aa2+1z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+1}
From the question it is given that the magnitude of zz is equal to 25\sqrt{\dfrac{2}{5}}.
As we know from the concept that the magnitude of z=x+iyz=x+iy will be x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}}.
z=2a2+1+i2aa2+i z=(2a2+1)2+(2aa2+1)2 z=4+4a2(a2+1)2 z=21+a2a2+1 z=2a2+1 \begin{aligned} & z=-\dfrac{2}{{{a}^{2}}+1}+i\dfrac{2a}{{{a}^{2}}+i} \\\ & \left| z \right|=\sqrt{{{\left( -\dfrac{2}{{{a}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2a}{{{a}^{2}}+1} \right)}^{2}}} \\\ & \Rightarrow \left| z \right|=\sqrt{\dfrac{4+4{{a}^{2}}}{{{\left( {{a}^{2}}+1 \right)}^{2}}}} \\\ & \Rightarrow \left| z \right|=\dfrac{2\sqrt{1+{{a}^{2}}}}{{{a}^{2}}+1} \\\ & \Rightarrow \left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\\ \end{aligned}
Here we have the magnitude of z=2a2+1\left| z \right|=\dfrac{2}{\sqrt{{{a}^{2}}+1}}
By comparing this with given value in question we will get the value of a,
25=2a2+1 15=2a2+1 a2+1=10 a=±3 \begin{aligned} & \sqrt{\dfrac{2}{5}}=\dfrac{2}{\sqrt{{{a}^{2}}+1}} \\\ & \Rightarrow \dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{2}}{\sqrt{{{a}^{2}}+1}} \\\ & \Rightarrow \sqrt{{{a}^{2}}+1}=\sqrt{10} \\\ & \Rightarrow a=\pm 3 \\\ \end{aligned}
Given in the question that a>0a > 0, so the value of a=+3
By using this value of a z will be
z=15+i35z=-\dfrac{1}{5}+i\dfrac{3}{5}
As we know from the concept that the value will be zˉ=xiy\bar{z}=x-iy for the z=x+iyz=x+iy.
zˉ=15i35\bar{z}=-\dfrac{1}{5}-i\dfrac{3}{5}

So, the correct answer is “Option C”.

Note: While solving these types of questions we should take care while performing the simplifications. We know that zˉ=xiy\bar{z}=x-iy for the z=x+iyz=x+iy not zˉ=x+iy\bar{z}=-x+iy for the z=x+iyz=x+iy.
Here from the concept we know that the magnitude of z=x+iyz=x+iy will be x2+y2\sqrt{{{x}^{2}}+{{y}^{2}}} notx2+y2{{x}^{2}}+{{y}^{2}}. If we commit a small mistake even we will conclude with a complete wrong answer.