Solveeit Logo

Question

Mathematics Question on Determinants

If a>0a > 0 and discriminant of ax2+2bx+cax^2 + 2bx +c is -ve then abax+b bcbx+c ax+bbx+c0\begin{vmatrix}a&b&ax+b\\\ b &c&bx+c\\\ ax+b &bx+c&0\end{vmatrix} is equal to

A

+ve

B

(acb2)(ax2+2bx+c)(ac-b^2)(ax^2 + 2bx + c)

C

-ve

D

0

Answer

-ve

Explanation

Solution

We have abax+b bcbx+c ax+bbx+c0\begin{vmatrix}a&b&ax+b\\\ b &c&bx+c\\\ ax+b &bx+c&0\end{vmatrix} By R3R3(xR1+R2);R_{3} \to R_{3} - \left(xR_{1}+ R_{2}\right); =abax+b bcbx+c 00(ax2+2bx+c)= \begin{vmatrix}a&b&ax+b\\\ b&c&bx+c\\\ 0&0&-\left(ax^{2} + 2bx +c\right)\end{vmatrix} =(ax2+2bx+c)(b2ac)=(+)()=ve= \left(ax^{2} +2bx+c\right)\left(b^{2}-ac\right) = \left(+\right)\left(-\right)=-ve