Solveeit Logo

Question

Question: If \({_{}^{n}P}_{5} = 20.\mspace{6mu}{_{}^{n}P}_{3}\), then \(n =\)...

If nP5=20.6munP3{_{}^{n}P}_{5} = 20.\mspace{6mu}{_{}^{n}P}_{3}, then n=n =

A

4

B

8

C

6

D

7

Answer

8

Explanation

Solution

n6mu!(n5)6mu!×(n3)6mu!n6mu!\frac{n\mspace{6mu}!}{(n - 5)\mspace{6mu}!} \times \frac{(n - 3)\mspace{6mu}!}{n\mspace{6mu}!}=20

(n3)(n4)=20n=1,6mu8\Rightarrow (n - 3)(n - 4) = 20 \Rightarrow n = - 1,\mspace{6mu} 8

But 1- 1 is not exceptable.