Solveeit Logo

Question

Question: If \(90^{o} < A < 180^{o}\) and \(\sin A = \frac{4}{5},\) then\(\tan A/2\) is equal to...

If 90o<A<180o90^{o} < A < 180^{o} and sinA=45,\sin A = \frac{4}{5}, thentanA/2\tan A/2 is equal to

A

12\frac{1}{2}

B

35\frac{3}{5}

C

32\frac{3}{2}

D

2

Answer

2

Explanation

Solution

sinA=45tanA=43\sin A = \frac{4}{5} \Rightarrow \tan A = - \frac{4}{3}, (90o<A<180o)(90^{o} < A < 180^{o})

tanA=2tanA/21tan2A/2,\tan A = \frac{2\tan A/2}{1 - \tan^{2}A/2}, LettanA2=P\tan\frac{A}{2} = P

\Rightarrow 43=2P1P2\frac{- 4}{3} = \frac{2P}{1 - P^{2}}4P26P4=04P^{2} - 6P - 4 = 0P=12P = - \frac{1}{2}, 2

P=12P = - \frac{1}{2} (impossible)

So, P=2P = 2 i.e., tanA/2=2.\tan A/2 = 2.