Question
Question: If 9 − x<sup>2</sup>\> \|x − a\| has atleast one negative solution, where a ∈ R then complete set o...
If 9 − x2> |x − a| has atleast one negative solution, where
a ∈ R then complete set of values of a is
A
(−25/2, 0)
B
(−35/4, 0)
C
(−37/2, 0)
D
(−37/4, 0)
Answer
(−37/4, 0)
Explanation
Solution
|x – a| < 9 – x2
⇒ x2 – 9 < x – a < 9 – x2 = 5 > x2 – x – 9 < −a < 9 – x2 – x
⇒ 9 + x – x2 > a > x2 + x – 9 = (x+21)2−437
for x ∈ R−, 9 + x − x2 < 9 and (x+21)2−437≥−437
⇒ 0 > a > −437