Solveeit Logo

Question

Question: If 9 − x<sup>2</sup>\> \|x − a\| has atleast one negative solution, where a ∈ R then complete set o...

If 9 − x2> |x − a| has atleast one negative solution, where

a ∈ R then complete set of values of a is

A

(−25/2, 0)

B

(−35/4, 0)

C

(−37/2, 0)

D

(−37/4, 0)

Answer

(−37/4, 0)

Explanation

Solution

|x – a| < 9 – x2

⇒ x2 – 9 < x – a < 9 – x2 = 5 > x2 – x – 9 < −a < 9 – x2 – x

⇒ 9 + x – x2 > a > x2 + x – 9 = (x+12)2374\left( x + \frac { 1 } { 2 } \right) ^ { 2 } - \frac { 37 } { 4 }

for x ∈ R, 9 + x − x2 < 9 and (x+12)2374374\left( x + \frac { 1 } { 2 } \right) ^ { 2 } - \frac { 37 } { 4 } \geq - \frac { 37 } { 4 }

⇒ 0 > a > 374- \frac { 37 } { 4 }