Solveeit Logo

Question

Question: If \({}^{9}{{P}_{5}}+5{}^{9}{{P}_{4}}={}^{10}{{P}_{r}}\) then find the value of r....

If 9P5+59P4=10Pr{}^{9}{{P}_{5}}+5{}^{9}{{P}_{4}}={}^{10}{{P}_{r}} then find the value of r.

Explanation

Solution

Hint: Use the fact that nPr=n!(nr)!{}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!} and 0rn0\le r\le n. Calculate the values of 9P5{}^{9}{{P}_{5}} and 9P4{}^{9}{{P}_{4}} ,hence determine the value of LHS. Now start by substituting r = 0,1,2,3, … till LHS = RHS.

Complete step-by-step answer:
9P5=9!(95)!=9!4!=9×8×7×6×5×4!4!=9×8×7×6×5=15120 9P4=9!(94)!=9!5!=9×8×7×6×5!5!=9×8×7×6=3024 \begin{aligned} & {}^{9}{{P}_{5}}=\dfrac{9!}{\left( 9-5 \right)!}=\dfrac{9!}{4!}=\dfrac{9\times 8\times 7\times 6\times 5\times 4!}{4!}=9\times 8\times 7\times 6\times 5=15120 \\\ & {}^{9}{{P}_{4}}=\dfrac{9!}{\left( 9-4 \right)!}=\dfrac{9!}{5!}=\dfrac{9\times 8\times 7\times 6\times 5!}{5!}=9\times 8\times 7\times 6=3024 \\\ \end{aligned}
Hence LHS =15120+5×3024=30240=15120+5\times 3024=30240.
When r = 0, RHS = 10!(100)!=1\dfrac{10!}{\left( 10-0 \right)!}=1
When r = 1, RHS = 10
When r = 2 RHS = 10×9=9010\times 9=90
When r = 3 RHS = 90×8=72090\times 8=720
When r = 4 RHS = 720×7=5040720\times 7=5040
When r = 5 RHS = 5040×6=302405040\times 6=30240
Hence, we have when r = 5 LHS = RHS.
Hence r = 5.

Note: Proof by argument:
Number of Permutations of 10 Letters taken 5 at a time = Number of permutations if a particular letter (say A) always occupies the first position + Number of permutations if that particular letter never occupies the first position.
LHS = 10P5{}^{10}{{P}_{5}}.
The number of permutations if a particular letter (say A) always occupies the first position = Number of permutations of remaining 9 letter taken 4 at a time = 9P4{}^{9}{{P}_{4}}
The number of permutations if a particular letter never occupies the first position = 9×9P49\times {}^{9}{{P}_{4}} Because the first place has 9 choices [NOT TAKING THE PARTICULAR LETTER] and the remaining letters can be arranged in 9P4{}^{9}{{P}_{4}} ways.
Now we know that (nr+1)nPr1=nPr\left( n-r+1 \right){}^{n}{{P}_{r-1}}={}^{n}{{P}_{r}}
Hence, we have
(95+1)9P4=9P5 59P4=9P5 \begin{aligned} & \left( 9-5+1 \right){}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\\ & \Rightarrow 5{}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\\ \end{aligned}
Hence 99P4=59P4+49P4=9P5+49P49{}^{9}{{P}_{4}}=5{}^{9}{{P}_{4}}+4{}^{9}{{P}_{4}}={}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}}
Hence, we have

& {}^{10}{{P}_{5}}={}^{9}{{P}_{4}}+{}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}} \\\ & \Rightarrow {}^{10}{{P}_{5}}={}^{9}{{P}_{5}}+5{}^{9}{{P}_{4}} \\\ \end{aligned}$$