Solveeit Logo

Question

Question: If 8g mol of \(PC{l_5}\) heated in a closed vessel of \[{\mathbf{10L}}\] capacity and \[{\mathbf{25}...

If 8g mol of PCl5PC{l_5} heated in a closed vessel of 10L{\mathbf{10L}} capacity and 25%{\mathbf{25}}\% dissociation into PCl3PC{l_3} and Cl2C{l_2} at the equilibrium then value of Kp{K_p} will be equal to
A) P30\dfrac{P}{{30}}
B) P15\dfrac{P}{{15}}
C) 23P\dfrac{2}{{3P}}
D) 32P\dfrac{3}{{2P}}

Explanation

Solution

Degree of dissociation of a substance is the fraction of the total number of molecules dissociated into simpler molecules at a particular temperature.
Degree  of  dissociation  (α)=number  of  moles  dissociatedtotal  number  of  moles  takenDegree\;of\;dissociation\;\left( \alpha \right) = \dfrac{{number\;of\;moles\;dissociated}}{{total\;number\;of\;moles\;taken}}

Complete step-by-step solution:
Let us look into our reaction first
PCl5PCl3+Cl2PC{l_5} \rightleftharpoons PC{l_3} + C{l_2}
By stoichiometry 11 mole of PCl5PC{l_5} gives 11 mole of PCl3PC{l_3} and 11 mole of Cl2C{l_2}. It is given that 25%25\% of PCl5PC{l_5} dissociated to give PCl3PC{l_3} and Cl2C{l_2}. Also, given that 8g8g mol of PCl5PC{l_5} is used.
When 25%25\% of 8g8g mol of PCl5PC{l_5} is dissociated we get 6g mol6g{\text{ }}mol of PCl5PC{l_5} remaining.
Let us see how that is
PCl5PCl3+Cl2PC{l_5} \rightleftharpoons PC{l_3} + C{l_2}

Initial mol880000
Moles after Dissociation8α8 - \alpha α\alpha α\alpha

Here α\alpha is given in %\% so we can say that 8×25100=28 \times \dfrac{{25}}{{100}} = 2 so, 2  mol2\;mol is dissociated and we get 2  mol2\;mol of PCl3PC{l_3} and Cl2C{l_2}. We can see now how the reaction looks like
PCl5PCl3+Cl2PC{l_5} \rightleftharpoons PC{l_3} + C{l_2}.

Initial mol880000
Moles after Dissociation828 - 22222

i.e., 6g mol6g{\text{ }}mol of PCl5PC{l_5}and 2  mol2\;mol of PCl3PC{l_3} and Cl2C{l_2} each.

In case of gaseous reaction, the equilibrium constant is calculated from partial pressure of gaseous reactants and products.
Kp=PPCl3×PCl2PPCl5{K_p} = \dfrac{{{P_{PC{l_3}}} \times {P_{C{l_2}}}}}{{{P_{PC{l_5}}}}}
We can also write this in terms of mole fraction
PA=PTXA{{\text{P}}_{\text{A}}} = {P_T}{{\text{X}}_{\text{A}}},

Applying this to equation
Kp=PXPCl3×PXCl2PXPCl5{K_p} = \dfrac{{P{X_{PC{l_3}}} \times P{X_{C{l_2}}}}}{{P{X_{PC{l_5}}}}}, where P be the total pressure
Where, X represents the mole fraction
Also the total moles at equilibrium is equal to 6+2+2=106 + 2 + 2 = 10 (from the reaction after dissociation)
XPCl3=number  of  moles  of  PCl3total  number  of  moles=210\Rightarrow {X_{PC{l_3}}} = \dfrac{{number\;of\;moles\;of\;PC{l_3}}}{{total\;number\;of\;moles}} = \dfrac{2}{{10}}
XCl2=number  of  moles  of  Cl2total  number  of  moles=210\Rightarrow {X_{C{l_2}}} = \dfrac{{number\;of\;moles\;of\;C{l_2}}}{{total\;number\;of\;moles}} = \dfrac{2}{{10}}
XPCl5=number  of  moles  of  PCl5total  number  of  moles=610\Rightarrow {X_{PC{l_5}}} = \dfrac{{number\;of\;moles\;of\;PC{l_5}}}{{total\;number\;of\;moles}} = \dfrac{6}{{10}}
Applying the value to the equation we get,
Kp=2P10×2P106P10=4P60\Rightarrow {K_p} = \dfrac{{\dfrac{{2P}}{{10}} \times \dfrac{{2P}}{{10}}}}{{\dfrac{{6P}}{{10}}}} = \dfrac{{4P}}{{60}}
Kp=P15\Rightarrow {K_p} = \dfrac{P}{{15}}

Hence the correct answer is option (B).

Note: We can also find the equilibrium constant in case of gaseous reaction using the equilibrium constant in terms of mole fraction,
For the reaction,
aA+bBxX+yYaA + bB \rightleftharpoons xX + yY
Then,
Kx=χXx  χYyχA  aχBa{K_x} = \dfrac{{\chi _X^x\;\chi _Y^y}}{{\chi _{A\;}^a\chi _B^a}}
Where χXx,    χYy,  χA  a,  χBa\chi _X^x,\;\;\chi _Y^y,\;\chi _{A\;}^a,\;\chi _B^a are the mole fractions of X,Y, A and B respectively, Kx{K_x}depends upon temperature as well as pressure and volume of the chemical system. It is found that
Kp=Kx(P)ng{K_p} = {K_x}{\left( P \right)^{\vartriangle {n_g}}}
Where P is external pressure and ng\vartriangle {n_g} is change in the number of gaseous moles.