Solveeit Logo

Question

Question: If \[8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5\]and \[y = {x^2}f(x)\], then what is \[\dfrac{{...

If 8f(x)+6f(1x)=x+58f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5and y=x2f(x)y = {x^2}f(x), then what is dydx\dfrac{{dy}}{{dx}}at x=1x = - 1?
A. 00
B. 114\dfrac{1}{{14}}
C. 114 - \dfrac{1}{{14}}
D. 11

Explanation

Solution

Firstly, we will find the value of f(x)f(x).For that we will first, replace xx by 1x\dfrac{1}{x} in the given equation 8f(x)+6f(1x)=x+58f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5 and then we will obtain two equations in terms of f(x)f(x) and f(1x)f\left( {\dfrac{1}{x}} \right). We will then solve the two equations for f(x)f(x). After solving for f(x)f(x), we will put that value of f(x)f(x) in the given condition y=x2f(x)y = {x^2}f(x) to obtain the value of yy. Now, we will get the value of yy in terms of xxi.e. we will get yy as a function of xx. After obtaining the value of yy in terms of xx, we will differentiate the value of yywe will obtain in terms of xxwith respect to xx. Now, as we have to find the value at x=1x = - 1, we will substitute x=1x = - 1in the value of dydx\dfrac{{dy}}{{dx}} obtained.

Complete step by step answer:
We are given,
8f(x)+6f(1x)=x+5(1)8f(x) + 6f\left( {\dfrac{1}{x}} \right) = x + 5 - - - - - - (1)
Now, Replacing xx by 1x\dfrac{1}{x} in (1), we get
8f(1x)+6f(x)=1x+5(2)\Rightarrow 8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5 - - - - - (2)
Multiplying first equation by 8,
(1) ×88×[(8f(x)+6f(1x))=x+5] \times 8 \Rightarrow 8 \times \left[ {\left( {8f(x) + 6f\left( {\dfrac{1}{x}} \right)} \right) = x + 5} \right]
=64f(x)+48f(1x)=8x+40(3)= 64f(x) + 48f\left( {\dfrac{1}{x}} \right) = 8x + 40 - - - - - (3)

Multiplying second equation by 6,
(2) ×66×[8f(1x)+6f(x)=1x+5] \times 6 \Rightarrow 6 \times \left[ {8f\left( {\dfrac{1}{x}} \right) + 6f(x) = \dfrac{1}{x} + 5} \right]
48f(1x)+36f(x)=6x+30(4)48f\left( {\dfrac{1}{x}} \right) + 36f(x) = \dfrac{6}{x} + 30 - - - - - (4)
Now, subtracting (4) from (3), we get
64f(x)+48f(1x)[48f(1x)+36f(x)]=8x+40(6x+30)\Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - \left[ {48f\left( {\dfrac{1}{x}} \right) + 36f(x)} \right] = 8x + 40 - \left( {\dfrac{6}{x} + 30} \right)
Opening the brackets, we get
64f(x)+48f(1x)48f(1x)36f(x)=8x+406x30\Rightarrow 64f(x) + 48f\left( {\dfrac{1}{x}} \right) - 48f\left( {\dfrac{1}{x}} \right) - 36f(x) = 8x + 40 - \dfrac{6}{x} - 30

Cancelling like terms with opposite signs, we get,
28f(x)=8x6x+10\Rightarrow 28f(x) = 8x - \dfrac{6}{x} + 10
So, we get the function as,
f(x)=128(8x6x+10)f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)
Now, we have, f(x)=128(8x6x+10)f(x) = \dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)
Substituting the value of f(x)f(x)in y=x2f(x)y = {x^2}f(x), we get
y=x2[128(8x6x+10)]\Rightarrow y = {x^2}\left[ {\dfrac{1}{{28}}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]
y=x228[8x6x+10]\Rightarrow y = \dfrac{{{x^2}}}{{28}}\left[ {8x - \dfrac{6}{x} + 10} \right]
Multiplying x2{x^2}inside the bracket
y=128[x2(8x6x+10)]\Rightarrow y = \dfrac{1}{{28}}\left[ {{x^2}\left( {8x - \dfrac{6}{x} + 10} \right)} \right]
y=128(8x36x2x+10x2)\Rightarrow y = \dfrac{1}{{28}}\left( {8{x^3} - \dfrac{{6{x^2}}}{x} + 10{x^2}} \right)

Simplifying the expression, we get,
y=128(8x36x+10x2)y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)
Now, differentiating y=128(8x36x+10x2)y = \dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right) with respect to xx, we have
dydx=ddx(128(8x36x+10x2))\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{1}{{28}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right)
Taking the constant out of differentiation,
dydx=128[ddx(8x36x+10x2)]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}\left( {8{x^3} - 6x + 10{x^2}} \right)} \right]
dydx=128[ddx8x3ddx6x+ddx10x2]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {\dfrac{d}{{dx}}8{x^3} - \dfrac{d}{{dx}}6x + \dfrac{d}{{dx}}10{x^2}} \right]

Using power rule of differentiation ddxxn=n×xn1\dfrac{d}{{dx}}{x^n} = n \times {x^{n - 1}}, we get,
dydx=128[8×3×x316×1×x11+10×2×x21]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {8 \times 3 \times {x^{3 - 1}} - 6 \times 1 \times {x^{1 - 1}} + 10 \times 2 \times {x^{2 - 1}}} \right]
As we know, x0=1{x^0} = 1. So,
dydx=128[24x26+20x]\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]
Hence, we have dydx=128[24x26+20x]\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]
We have to find the value of dydx\dfrac{{dy}}{{dx}}at x=1x = - 1.
So, we will substitute x=1x = - 1in dydx=128[24x26+20x]\dfrac{{dy}}{{dx}} = \dfrac{1}{{28}}\left[ {24{x^2} - 6 + 20x} \right]

Therefore, dydx\dfrac{{dy}}{{dx}}at x=1x = - 1is
dydxx=1=128[24(1)26+20(1)]\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24{{( - 1)}^2} - 6 + 20( - 1)} \right]
We know, (a)2=(a)2=a2{(a)^2} = {( - a)^2} = {a^2}
dydxx=1=128[24(1)620)]\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}\left[ {24(1) - 6 - 20)} \right]
dydxx=1=128[24620]\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 6 - 20]
Solving the right side
dydxx=1=128[2426]\dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[24 - 26]
dydxx=1=128[2]\Rightarrow \dfrac{{dy}}{{dx}}{|_{x = - 1}} = \dfrac{1}{{28}}[ - 2]
Simplifying further, we get
dydxx=1=114\therefore \dfrac{{dy}}{{dx}}{|_{x = - 1}} = - \dfrac{1}{{14}}
Hence, we get, dydx\dfrac{{dy}}{{dx}} at x=1x = - 1equals 114 - \dfrac{1}{{14}}.

Hence, the correct option is C.

Note: We need to be very careful while finding f(x)f(x). We must take care of the fact that we have to replace xx by 1x\dfrac{1}{x} in the whole equation and not just the left hand side. And, then keep in mind to solve for f(x)f(x) and f(1x)f\left( {\dfrac{1}{x}} \right) from the obtained and the given equations. Also, we must remember to find the value of dydx\dfrac{{dy}}{{dx}}at x=1x = - 1 and not just leaving after finding the value of dydx\dfrac{{dy}}{{dx}}. We must learn the formulas for differentiation very carefully otherwise we will not be able to solve the question.