Solveeit Logo

Question

Mathematics Question on Sequences and Series

If 8=3+14(3+p)+142(3+2p)+143(3+3p)+8 = 3 + \frac{1}{4}(3 + p) + \frac{1}{4^2}(3 + 2p) + \frac{1}{4^3}(3 + 3p) + \ldots \infty, then the value of pp is ______.

Answer

Given series:
8=3+14(3+p)+142(3+2p)+143(3+3p)+8=3+\dfrac{1}{4}(3+p)+\dfrac{1}{4^2}(3+2p)+\dfrac{1}{4^3}(3+3p)+\ldots
This is an arithmetic-geometric progression (A.G.P). Using the sum formula for an infinite
A. G. P. , we have:
Sum=a1r+dr(1r)2\text{Sum}=\frac{a}{1-r}+\frac{d\cdot r}{(1-r)^2}
Solving for p:p:
4p9=4p=9\dfrac{4p}{9}=4\Rightarrow p=9