Solveeit Logo

Question

Question: If \(7^{\log_{7}(x^{2} - 4x + 5)}\)= (x –1). Then x may have values...

If 7log7(x24x+5)7^{\log_{7}(x^{2} - 4x + 5)}= (x –1). Then x may have values

A

2,3

B

7

C

–2, –3

D

2, – 3

Answer

2,3

Explanation

Solution

7log7(x2+4x+5)7^{\log_{7}(x^{2} + 4x + 5)}= (x –1)

Ž x2 – 4x + 5 = x – 1

Ž x2 – 5x + 6 = 0 Ž x = 2, 3