Question
Question: If \[7\,{\text{gm}}\] \[{{\text{N}}_{\text{2}}}\] is mixed with \[20\,{\text{gm}}\] \[{\text{Ar}}\]....
If 7gm N2 is mixed with 20gm Ar. What will be the CP/CV of the mixture?
A. 617
B. 711
C. 1117
D. 1317
Solution
For this, first of all, we will find the number of moles of each gas, which may differ as the proportion of each gas is different. It is important to note that degrees of freedom of a di-atomic gas is always more than that of a mono-atomic gas. Calculate CPmix and CVmix separately and find the ratio.
Formula used:
We apply the formula to calculate number of moles:
n=Mm …… (1)
Where,
n indicates the number of moles.
m indicates given mass.
M indicates molar or molecular mass.
CPmix=nN2+nArnN2×CP+nAr×CP, and
CVmix=nN2+nArnN2×CV+nAr×CV
Complete step by step answer:
We know, for nitrogen gas (N2), which is a di-atomic gas, the degrees of freedom i.e. f=5. For argon gas (Ar), which is a mono-atomic gas, the degrees of freedom i.e. f=3.
Again, given, the mass of nitrogen gas taken is 7gm and the mass of nitrogen gas taken is 20gm . We need to convert these two masses into a number of moles to proceed the solution.
Molecular mass of N2 is: 2 \times 14\,{\text{g}} {\text{ = 28 g}} \\\
Molecular mass of Ar is 40g. To calculate number of moles of nitrogen, substitute,
m=7g and M=28g/mol in equation (1):
{n_{{{\text{N}}_{\text{2}}}}} = \dfrac{m}{M} \\\
\Rightarrow {n_{{{\text{N}}_{\text{2}}}}} = \dfrac{{7\,{\text{g}}}}{{28\,{\text{g/mol}}}} \\\
\Rightarrow {n_{{{\text{N}}_{\text{2}}}}} = \dfrac{1}{4}\,{\text{mol}} \\\
To calculate number of moles of argon, substitute,
m=20g and M=40g/mol in equation (1):
{n_{{\text{Ar}}}} = \dfrac{m}{M} \\\
\Rightarrow {n_{{\text{Ar}}}} = \dfrac{{20\,{\text{g}}}}{{40\,{\text{g/mol}}}} \\\
\Rightarrow {n_{{\text{Ar}}}} = \dfrac{1}{2}\,{\text{mol}} \\\
For the nitrogen gas (N2),
CV=25R and CP=27R
For the argon gas (Ar),
CV=23R and CP=25R
To calculate Cp for the mixture, we apply the formula:
CPmix=nN2+nArnN2×CP+nAr×CP …… (2)
Substitute the values of the respective gases in the equation (2), we get:
{C_{{{\text{P}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{1}{4} \times \dfrac{{7R}}{2} + \dfrac{1}{2} \times \dfrac{{5R}}{2}}}{{\dfrac{1}{4} + \dfrac{1}{2}}} \\\
\Rightarrow {C_{{{\text{P}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{{7R}}{8} + \dfrac{{5R}}{4}}}{{\dfrac{3}{4}}} \\\
\Rightarrow {C_{{{\text{P}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{{17R}}{8}}}{{\dfrac{3}{4}}} \\\
\Rightarrow {C_{{{\text{P}}_{{\text{mix}}}}}} = \dfrac{{17R}}{6} \\\
To calculate CV for the mixture, we apply the formula:
CVmix=nN2+nArnN2×CV+nAr×CV …… (3)
Substitute the values of the respective gases in the equation (3), we get:
{C_{{{\text{V}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{1}{4} \times \dfrac{{5R}}{2} + \dfrac{1}{2} \times \dfrac{{3R}}{2}}}{{\dfrac{1}{4} + \dfrac{1}{2}}} \\\
\Rightarrow {C_{{{\text{V}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{{5R}}{8} + \dfrac{{3R}}{4}}}{{\dfrac{3}{4}}} \\\
\Rightarrow {C_{{{\text{V}}_{{\text{mix}}}}}} = \dfrac{{\dfrac{{11R}}{8}}}{{\dfrac{3}{4}}} \\\
\Rightarrow {C_{{{\text{V}}_{{\text{mix}}}}}} = \dfrac{{11R}}{6} \\\
Now, the ratio of CP and CV of the gas mixture is:
\dfrac{{{C_{{{\text{P}}_{{\text{mix}}}}}}}}{{{C_{{{\text{V}}_{{\text{mix}}}}}}}}=\dfrac{{\dfrac{{17R}}{6}}}{{\dfrac{{11R}}{6}}} \\\
\Rightarrow\dfrac{{{C_{{{\text{P}}_{{\text{mix}}}}}}}}{{{C_{{{\text{V}}_{{\text{mix}}}}}}}}= \dfrac{{17R}}{6} \times \dfrac{6}{{11R}} \\\
\therefore\dfrac{{{C_{{{\text{P}}_{{\text{mix}}}}}}}}{{{C_{{{\text{V}}_{{\text{mix}}}}}}}}= \dfrac{{17}}{{11}} \\\
Hence, the ratio is 1117.So, option C is correct.
Note: It is important to remember that degrees of freedom of di-atomic gas is more than that of mono-atomic gases. Most of the students tend to make mistakes at this point. We can also solve the problem by finding the degree of freedom of the gas mixture and then find the ratio. By using the formula,
CPmix/CVmix=1+fmix2.