Solveeit Logo

Question

Question: If \[{}^7{C_r} + 3{}^7{C_{r + 1}} + 3{}^7{C_{r + 2}} + {}^7{C_{r + 3}} > {}^{10}{C_4}\], then the qu...

If 7Cr+37Cr+1+37Cr+2+7Cr+3>10C4{}^7{C_r} + 3{}^7{C_{r + 1}} + 3{}^7{C_{r + 2}} + {}^7{C_{r + 3}} > {}^{10}{C_4}, then the quadratic equations whose roots are α\alpha , β\beta , and αr1{\alpha ^{r - 1}}, βr1{\beta ^{r - 1}} respectively, have
(a) No common roots
(b) Only one common root
(c) Two common roots
(d) None of these

Explanation

Solution

Here, we need to find which of the options is true for the roots of the two quadratic equations. First, we will rewrite the given inequation. Then, we will use the property to simplify the expression until the left hand side becomes comparable to the right hand side. We will use this to find the value of rr. Finally, we will substitute the value of rr in the roots of the second quadratic equation and check whether any of the roots of the quadratic equation are common or not, and thus, find the correct answer.
Formula Used: We will use the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}.

Complete step by step solution:
First, we will simplify the given inequation.
Rewriting 37Cr+13{}^7{C_{r + 1}} as the sum of 7Cr+1{}^7{C_{r + 1}} and 27Cr+12{}^7{C_{r + 1}}, and 37Cr+23{}^7{C_{r + 2}} as the sum of 27Cr+22{}^7{C_{r + 2}} and 7Cr+2{}^7{C_{r + 2}}, we get
7Cr+7Cr+1+27Cr+1+27Cr+2+7Cr+2+7Cr+3>10C4\Rightarrow {}^7{C_r} + {}^7{C_{r + 1}} + 2{}^7{C_{r + 1}} + 2{}^7{C_{r + 2}} + {}^7{C_{r + 2}} + {}^7{C_{r + 3}} > {}^{10}{C_4}
Factoring out 2 from the terms, we get
7Cr+7Cr+1+2(7Cr+1+7Cr+2)+7Cr+2+7Cr+3>10C4\Rightarrow {}^7{C_r} + {}^7{C_{r + 1}} + 2\left( {{}^7{C_{r + 1}} + {}^7{C_{r + 2}}} \right) + {}^7{C_{r + 2}} + {}^7{C_{r + 3}} > {}^{10}{C_4}
Pairing the terms in the expression, we get
(7Cr+7Cr+1)+2(7Cr+1+7Cr+2)+(7Cr+2+7Cr+3)>10C4\Rightarrow \left( {{}^7{C_r} + {}^7{C_{r + 1}}} \right) + 2\left( {{}^7{C_{r + 1}} + {}^7{C_{r + 2}}} \right) + \left( {{}^7{C_{r + 2}} + {}^7{C_{r + 3}}} \right) > {}^{10}{C_4}
Now, we know that the sum of nCr{}^n{C_r} and nCr+1{}^n{C_{r + 1}} is given as n+1Cr+1{}^{n + 1}{C_{r + 1}}, that is nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}.
Substituting n=7n = 7 in the formula, we get
7Cr+7Cr+1=7+1Cr+1\Rightarrow {}^7{C_r} + {}^7{C_{r + 1}} = {}^{7 + 1}{C_{r + 1}}
Therefore, we get
7Cr+7Cr+1=8Cr+1\Rightarrow {}^7{C_r} + {}^7{C_{r + 1}} = {}^8{C_{r + 1}}
Substituting n=7n = 7 and r+1r + 1 for rr in the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}, we get
7Cr+1+7Cr+1+1=7+1Cr+1+1\Rightarrow {}^7{C_{r + 1}} + {}^7{C_{r + 1 + 1}} = {}^{7 + 1}{C_{r + 1 + 1}}
Adding the terms in the expression, we get
7Cr+1+7Cr+2=8Cr+2\Rightarrow {}^7{C_{r + 1}} + {}^7{C_{r + 2}} = {}^8{C_{r + 2}}
Substituting n=7n = 7 and r+2r + 2 for rr in the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}, we get
7Cr+2+7Cr+2+1=7+1Cr+2+1\Rightarrow {}^7{C_{r + 2}} + {}^7{C_{r + 2 + 1}} = {}^{7 + 1}{C_{r + 2 + 1}}
Adding the terms in the expression, we get
7Cr+2+7Cr+3=8Cr+3\Rightarrow {}^7{C_{r + 2}} + {}^7{C_{r + 3}} = {}^8{C_{r + 3}}
Now, we can simplify the inequation further.
Substituting 7Cr+7Cr+1=8Cr+1{}^7{C_r} + {}^7{C_{r + 1}} = {}^8{C_{r + 1}}, 7Cr+1+7Cr+2=8Cr+2{}^7{C_{r + 1}} + {}^7{C_{r + 2}} = {}^8{C_{r + 2}}, and 7Cr+2+7Cr+3=8Cr+3{}^7{C_{r + 2}} + {}^7{C_{r + 3}} = {}^8{C_{r + 3}} in the inequation (7Cr+7Cr+1)+2(7Cr+1+7Cr+2)+(7Cr+2+7Cr+3)>10C4\left( {{}^7{C_r} + {}^7{C_{r + 1}}} \right) + 2\left( {{}^7{C_{r + 1}} + {}^7{C_{r + 2}}} \right) + \left( {{}^7{C_{r + 2}} + {}^7{C_{r + 3}}} \right) > {}^{10}{C_4}, we get
8Cr+1+28Cr+2+8Cr+3>10C4\Rightarrow {}^8{C_{r + 1}} + 2{}^8{C_{r + 2}} + {}^8{C_{r + 3}} > {}^{10}{C_4}
Rewriting 28Cr+22{}^8{C_{r + 2}} as the sum of 8Cr+2{}^8{C_{r + 2}} and 8Cr+2{}^8{C_{r + 2}}, we get
8Cr+1+8Cr+2+8Cr+2+8Cr+3>10C4\Rightarrow {}^8{C_{r + 1}} + {}^8{C_{r + 2}} + {}^8{C_{r + 2}} + {}^8{C_{r + 3}} > {}^{10}{C_4}
Pairing the terms in the expression, we get
(8Cr+1+8Cr+2)+(8Cr+2+8Cr+3)>10C4\Rightarrow \left( {{}^8{C_{r + 1}} + {}^8{C_{r + 2}}} \right) + \left( {{}^8{C_{r + 2}} + {}^8{C_{r + 3}}} \right) > {}^{10}{C_4}
Substituting n=8n = 8 and r+1r + 1 for rr in the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}, we get
8Cr+1+8Cr+1+1=8+1Cr+1+1\Rightarrow {}^8{C_{r + 1}} + {}^8{C_{r + 1 + 1}} = {}^{8 + 1}{C_{r + 1 + 1}}
Adding the terms in the expression, we get
8Cr+1+8Cr+2=9Cr+2\Rightarrow {}^8{C_{r + 1}} + {}^8{C_{r + 2}} = {}^9{C_{r + 2}}
Substituting n=8n = 8 and r+2r + 2 for rr in the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}, we get
8Cr+2+8Cr+2+1=8+1Cr+2+1\Rightarrow {}^8{C_{r + 2}} + {}^8{C_{r + 2 + 1}} = {}^{8 + 1}{C_{r + 2 + 1}}
Adding the terms in the expression, we get
8Cr+2+8Cr+3=9Cr+3\Rightarrow {}^8{C_{r + 2}} + {}^8{C_{r + 3}} = {}^9{C_{r + 3}}
Now, we can simplify the inequation further.
Substituting 8Cr+1+8Cr+2=9Cr+2{}^8{C_{r + 1}} + {}^8{C_{r + 2}} = {}^9{C_{r + 2}} and 8Cr+2+8Cr+3=9Cr+3{}^8{C_{r + 2}} + {}^8{C_{r + 3}} = {}^9{C_{r + 3}} in the inequation (8Cr+1+8Cr+2)+(8Cr+2+8Cr+3)>10C4\left( {{}^8{C_{r + 1}} + {}^8{C_{r + 2}}} \right) + \left( {{}^8{C_{r + 2}} + {}^8{C_{r + 3}}} \right) > {}^{10}{C_4}, we get
9Cr+2+9Cr+3>10C4\Rightarrow {}^9{C_{r + 2}} + {}^9{C_{r + 3}} > {}^{10}{C_4}
Substituting n=9n = 9 and r+2r + 2 for rr in the formula nCr+nCr+1=n+1Cr+1{}^n{C_r} + {}^n{C_{r + 1}} = {}^{n + 1}{C_{r + 1}}, we get
9Cr+2+9Cr+2+1=9+1Cr+2+1\Rightarrow {}^9{C_{r + 2}} + {}^9{C_{r + 2 + 1}} = {}^{9 + 1}{C_{r + 2 + 1}}
Adding the terms in the expression, we get
9Cr+2+9Cr+3=10Cr+3\Rightarrow {}^9{C_{r + 2}} + {}^9{C_{r + 3}} = {}^{10}{C_{r + 3}}
Substituting 9Cr+2+9Cr+3=10Cr+3{}^9{C_{r + 2}} + {}^9{C_{r + 3}} = {}^{10}{C_{r + 3}} in the inequation 9Cr+2+9Cr+3>10C4{}^9{C_{r + 2}} + {}^9{C_{r + 3}} > {}^{10}{C_4}, we get
10Cr+3>10C4\Rightarrow {}^{10}{C_{r + 3}} > {}^{10}{C_4}
Thus, we get
r+3=5\Rightarrow r + 3 = 5
Subtracting 3 from both sides of the equation, we get
r+33=53 r=2\begin{array}{l} \Rightarrow r + 3 - 3 = 5 - 3\\\ \Rightarrow r = 2\end{array}
\therefore The value of rr is 2.
Now, we will find the roots of the two quadratic equations.
The roots of the first quadratic equation are α\alpha , β\beta .
The roots of the second quadratic equation are αr1{\alpha ^{r - 1}}, βr1{\beta ^{r - 1}}.
Substituting r=2r = 2 in the roots of the second quadratic equation, we get
α21=α1=α{\alpha ^{2 - 1}} = {\alpha ^1} = \alpha
β21=β1=β{\beta ^{2 - 1}} = {\beta ^1} = \beta
Therefore, the roots of the second quadratic equation are also α\alpha , β\beta .
The roots of both the quadratic equations are equal/common.
Thus, the quadratic equations have two common roots.

The correct option is option (c).

Note:
We obtained the equation r+3=5r + 3 = 5 from the inequation 10Cr+3>10C4{}^{10}{C_{r + 3}} > {}^{10}{C_4}.
We know that 10C6=10C4{}^{10}{C_6} = {}^{10}{C_4}, 10C7=10C3{}^{10}{C_7} = {}^{10}{C_3}, 10C8=10C2{}^{10}{C_8} = {}^{10}{C_2}, 10C9=10C1{}^{10}{C_9} = {}^{10}{C_1}, and 10C10=10C0{}^{10}{C_{10}} = {}^{10}{C_0}.
Since 10C0{}^{10}{C_0}, 10C1{}^{10}{C_1}, 10C2{}^{10}{C_2}, and 10C3{}^{10}{C_3} are less than 10C4{}^{10}{C_4}, therefore 10C6{}^{10}{C_6}, 10C7{}^{10}{C_7}, 10C8{}^{10}{C_8}, 10C9{}^{10}{C_9}, and 10C10{}^{10}{C_{10}} are also less than 10C4{}^{10}{C_4}.
Therefore, the only possible value of r+3r + 3 for which the inequation 10Cr+3>10C4{}^{10}{C_{r + 3}} > {}^{10}{C_4} is true is 5.