Solveeit Logo

Question

Question: If \[(6,10,10)\] , \[(1,0, - 5)\], \[(6, - 10,0)\] are vertices of a triangle, Find the direction ra...

If (6,10,10)(6,10,10) , (1,0,5)(1,0, - 5), (6,10,0)(6, - 10,0) are vertices of a triangle, Find the direction ratios of its sides. Determine whether it is right angled or isosceles?

Explanation

Solution

Hint : In this problem, we have to find direction ratio of the side of the triangle when the vertices are given (6,10,10)(6,10,10) , (1,0,5)(1,0, - 5), (6,10,0)(6, - 10,0). Let us assume the direction ratios of a line are the three sides as a,b,ca,b,c which are proportional to direction cosines.
Direction cosines is the angle made by the lines with the axis’s.
If ABCABC be a line joining the A(x1,y1,z1)A({x_1},{y_1},{z_1}),B(x1,y1,z1)B({x_1},{y_1},{z_1}) and C(x1,y1,z1)C({x_1},{y_1},{z_1}) then the direction ratios of the line ABCABC are (x2x1)({x_2} - {x_1}) , (y2y1)({y_2} - {y_1}) and (z2z1)({z_2} - {z_1}).
Direction ratio of ABAB is negative of the direction ratio of BABA.
Angle between two lines is given by cosθ=(x1x2+y1y2+z1z2)x12+y12+z12x22+y22+z22\cos \theta = \dfrac{{({x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2})}}{{\sqrt {{x_1}^2 + {y_1}^2 + {z_1}^2} \sqrt {{x_2}^2 + {y_2}^2 + {z_2}^2} }}, where θ\theta is the angle between the lines.
To find the direction ratio, we simply subtract the coordinates of the vertices of the triangle.

Complete step-by-step answer :
Let ABCABC be the given triangle with the vertices A(6,10,10)A(6,10,10) , B(1,0,5)B(1,0, - 5) and C(6,10,0)C(6, - 10,0).on comparing with the general form,
If ABCABC be a line joining the A(x1,y1,z1)A({x_1},{y_1},{z_1}), B(x1,y1,z1)B({x_1},{y_1},{z_1}) and C(x1,y1,z1)C({x_1},{y_1},{z_1}) then the direction ratios of the line ABCABC are (x2x1)({x_2} - {x_1}) , (y2y1)({y_2} - {y_1}) and (z2z1)({z_2} - {z_1}).
So, we have to find the direction ratio of ABAB, BCBC and ACAC.
Formula for finding the vertices of the direction ratios of the line ABCABC are (x2x1)({x_2} - {x_1}) , (y2y1)({y_2} - {y_1}) and (z2z1)({z_2} - {z_1}).
To Determine the direction ratios of ABAB:
Let us assume A(x1,y1,z1)=A(6,10,10)A({x_1},{y_1},{z_1}) = A(6,10,10) and B(x2,y2,z2)=B(1,0,5)B({x_2},{y_2},{z_2}) = B(1,0, - 5).
The direction ratios of ABAB are (16)(1 - 6) , (010)(0 - 10) , ((5)10)(( - 5) - 10)
i.e . AB(5,10,15)AB( - 5, - 10, - 15)
Similarly, To Determine the direction ratios of BCBC:
Let us assume B(x1,y1,z1)=B(1,0,5)B({x_1},{y_1},{z_1}) = B(1,0, - 5) and C(x2,y2,z2)=C(6,10,0)C({x_2},{y_2},{z_2}) = C(6, - 10,0).
The direction ratios of BCBC are (61)(6 - 1) , (100)( - 10 - 0) , (0(5))(0 - ( - 5)) .
i.e . BC(5,10,5)BC(5, - 10,5).
Similarly, To Determine the direction ratios of ACAC:
Let us assume A(x1,y1,z1)=A(6,10,10)A({x_1},{y_1},{z_1}) = A(6,10,10) and C(x2,y2,z2)=C(6,10,0)C({x_2},{y_2},{z_2}) = C(6, - 10,0).
The direction ratios of ACAC are (66)(6 - 6) , (1010)( - 10 - 10) , (010)(0 - 10) .
i.e . AC(0,20,10)AC(0, - 20, - 10)
Therefore, AB(5,10,15)AB( - 5, - 10, - 15),BC(5,10,5)BC(5, - 10,5),and AC(0,20,10)AC(0, - 20, - 10).
We needs to Finding the angle between the two lines by the formula is,
cosθ=(x1x2+y1y2+z1z2)x12+y12+z12x22+y22+z22\cos \theta = \dfrac{{({x_1}{x_2} + {y_1}{y_2} + {z_1}{z_2})}}{{\sqrt {{x_1}^2 + {y_1}^2 + {z_1}^2} \sqrt {{x_2}^2 + {y_2}^2 + {z_2}^2} }} --------- (1)
Now, Finding the angle (θ=A)(\theta = A) between the two lines AB(5,10,15)AB( - 5, - 10, - 15) and AC(0,20,10)AC(0, - 20, - 10), then
Substitute all the values in the equation (1), then
(1)cosA=((5)(0)+(10)(20)+(15)(10))(5)2+(10)2+(15)2(0)2+(20)2+(10)2 \Rightarrow \cos A = \dfrac{{(( - 5)(0) + ( - 10)( - 20) + ( - 15)( - 10))}}{{\sqrt {{{( - 5)}^2} + {{( - 10)}^2} + {{( - 15)}^2}} \sqrt {{{(0)}^2} + {{( - 20)}^2} + {{( - 10)}^2}} }}
On simplifying, we get
cosA=200+150350500=350350500=710\cos A = \dfrac{{200 + 150}}{{\sqrt {350} \sqrt {500} }} = \dfrac{{350}}{{\sqrt {350} \sqrt {500} }} = \sqrt {\dfrac{7}{{10}}}
Therefore, A=cos1710\angle A = {\cos ^{ - 1}}\sqrt {\dfrac{7}{{10}}} ----------(2)
Similarly, Finding the angle (θ=B)(\theta = B) between the two lines AB(5,10,15)AB( - 5, - 10, - 15) and BC(5,10,5)BC(5, - 10,5), then
Substitute all the values in the equation (1), then
(1) cosB=((5)(5)+(10)(10)+(15)(5))(5)2+(10)2+(15)2(5)2+(10)2+(5)2 \Rightarrow \cos B = \dfrac{{(( - 5)(5) + ( - 10)( - 10) + ( - 15)(5))}}{{\sqrt {{{(5)}^2} + {{(10)}^2} + {{(15)}^2}} \sqrt {{{(5)}^2} + {{( - 10)}^2} + {{(5)}^2}} }}
cosB=25+10075350150=0350150=0\cos B = \dfrac{{ - 25 + 100 - 75}}{{\sqrt {350} \sqrt {150} }} = \dfrac{0}{{\sqrt {350} \sqrt {150} }} = 0
Therefore, B=cos10=π2\angle B = {\cos ^{ - 1}}0 = \dfrac{\pi }{2} ----------(3)
Now, Now, Finding the angle (θ=C)(\theta = C) between the two lines BC(5,10,5)BC(5, - 10,5) and AC(0,20,10)AC(0, - 20, - 10), then
Substitute all the values in the equation (1), then
Similarly, cosC=((5)(0)+(10)(20)+(5)(10))(5)2+(10)2+(5)2(0)2+(20)2+(10)2\cos C = \dfrac{{(( - 5)(0) + (10)( - 20) + ( - 5)( - 10))}}{{\sqrt {{{( - 5)}^2} + {{(10)}^2} + {{( - 5)}^2}} \sqrt {{{(0)}^2} + {{( - 20)}^2} + {{( - 10)}^2}} }}
cosC=200+50150500=150150500=310\cos C = \dfrac{{ - 200 + 50}}{{\sqrt {150} \sqrt {500} }} = \dfrac{{ - 150}}{{\sqrt {150} \sqrt {500} }} = - \sqrt {\dfrac{3}{{10}}} (negative sign of cosine is become positive)
Therefore, C=cos1310\angle C = {\cos ^{ - 1}}\sqrt {\dfrac{3}{{10}}} ---------(4)
Hence, we see that B=π2\angle B = \dfrac{\pi }{2}, and AC\angle A \ne \angle C.
Therefore ABCABCis a right angle triangle, not an isosceles triangle.

Note : For this we will first find the direction ratio of each side. Then we will find the angle between these lines to check whether the given triangle is right angle or isosceles.
We find the given triangle is a right angled triangle by the cosine angle formula.