Solveeit Logo

Question

Question: If \(60\,{\text{g}}\) of sucrose and \({\text{90}}\,{\text{g}}\) of glucose are dissolved in \(1000\...

If 60g60\,{\text{g}} of sucrose and 90g{\text{90}}\,{\text{g}} of glucose are dissolved in 1000mL1000\,{\text{mL}} of solution (aqueous). The specific gravity of the resulting solution is 1.1g/mL1.1\,{\text{g/mL}}. The percentage of moles of sucrose present in the solution will be:
(Assume volume of solution does not change by addition of solutes)
A. 0.3280.328
B.0.2580.258
C.0.4690.469
D. 0.1520.152

Explanation

Solution

We can determine the percentage of moles per sucrose by using the mole fraction formula. For this, we will determine the moles of each solute of the mixture by using a mole formula. Mass of solvent is determined by density formula.

Formula used:
mole fraction = Molesofa componenttotal moles of the mixture{\text{mole fraction}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{a component}}}}{{{\text{total moles of the mixture}}}}
density = MassVolume{\text{density}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Volume}}}}
Mole = MassMolarmass{\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}

Complete step by step answer:
Determine the mole of glucose as follows:
Mole = MassMolarmass{\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}
Molar mass of the glucose is 180g/mol180\,{\text{g/mol}} .
Substitute 180g/mol180\,{\text{g/mol}}for molar mass and 90g{\text{90}}\,{\text{g}} for mass.
Mole = 90g180g/mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,\dfrac{{90\,{\text{g}}}}{{180\,{\text{g/mol}}}}
Mole = 0.5mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,0.5\,{\text{mol}}
Determine the mole of sucrose as follows:
Molar mass of the sucrose is 342g/mol342\,{\text{g/mol}} .
Substitute 180g/mol180\,{\text{g/mol}} for molar mass and 60g{\text{60}}\,{\text{g}} for mass.
Mole = 60g342g/mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,\dfrac{{60\,{\text{g}}}}{{342\,{\text{g/mol}}}}
Mole = 0.175mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,0.175\,{\text{mol}}
Determine the mass of solution as follows:
density = MassVolume{\text{density}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Volume}}}}
Substitute 1000mL1000\,{\text{mL}} for volume and 1.1g/mL1.1\,{\text{g/mL}} for density.
1.1g/mL = Mass1000mL\Rightarrow 1.1\,{\text{g/mL}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{1000\,{\text{mL}}}}
Massofsolution = 1.1g/mL×1000mL\Rightarrow {\text{Mass}}\,{\text{of}}\,{\text{solution}}\,\,{\text{ = }}\,\,{\text{1}}{\text{.1}}\,{\text{g/mL}}\, \times \,{\text{1000}}\,{\text{mL}}\,
Massofsolution = 1100g\Rightarrow{\text{Mass}}\,{\text{of}}\,{\text{solution}}\,\,{\text{ = }}\,\,{\text{1100}}\,{\text{g}}
Subtract the mass of sucrose and glucose from the mass of solution to determine the mass of water.
g\Rightarrow{\text{g}}\, 1100g90g60g = 950g1100\,{\text{g}} - 90\,{\text{g}} - 60\,{\text{g}}\,{\text{ = }}\,{\text{950}}\,{\text{g}}
Determine the mole of water as follows:
Molar mass of the water is18g/mol18\,{\text{g/mol}} .
Substitute 18g/mol18\,{\text{g/mol}} for molar mass and 950g{\text{950}}\,{\text{g}} for mass.
Mole = 950g18g/mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,\dfrac{{950\,{\text{g}}}}{{18\,{\text{g/mol}}}}
Mole = 52.8mol\Rightarrow {\text{Mole}}\,{\text{ = }}\,52.8\,{\text{mol}}
Use the mole fraction formula to determine the mole fraction of sucrose as follows:
mole fraction = MolesofsucroseMolesofsucrose+Molesofglucose+Molesofwater\Rightarrow {\text{mole fraction}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{sucrose}}}}{{{\text{Moles}}\,{\text{of}}\,{\text{sucrose}} + {\text{Moles}}\,{\text{of}}\,{\text{glucose}} + {\text{Moles}}\,{\text{of}}\,{\text{water}}}}
mole fraction = 0.175mol0.175mol+0.5mol+52.8 mol\Rightarrow {\text{mole fraction}}\,{\text{ = }}\,\dfrac{{{\text{0}}{\text{.175}}\,{\text{mol}}}}{{{\text{0}}{\text{.175}}\,{\text{mol}} + {\text{0}}{\text{.5}}\,{\text{mol}} + {\text{52}}{\text{.8 mol}}}}
mole fraction = 3.28×103\Rightarrow {\text{mole fraction}}\,{\text{ = }}\,3.28\, \times \,{10^{ - 3}}
Multiply the mole fraction of sucrose with 100100 to determine the percentage of moles of sucrose.
 = 3.28×103×100\,{\text{ = }}\,3.28\, \times \,{10^{ - 3}}\, \times 100
 = 0.328\,{\text{ = }}\,0.328
So, the percentage of moles of sucrose present in the solution will be 0.3280.328.

**Therefore, option (A) 0.3280.328 is correct.

Note: **
Specific gravity represents the density. Similarly, the mole fraction of other components can also be determined. The sum of the mole fraction of all components of a mixture is considered as 11. In the case of three components, after calculating the mole fraction of two components the third can be calculated by subtracting the values of two components from 11.