Solveeit Logo

Question

Mathematics Question on Sequence and series

If 6th6^{th} term of G.P.G.P. is 22, then the product of first 1111 terms of the G.P.G.P. is equal to

A

512

B

1024

C

2048

D

256

Answer

2048

Explanation

Solution

11 terms of GPGP are
ar5,ar4,ar3,ar2,ar,a,ar,ar2,ar3,ar4,ar5\because a r^{5}, a r^{4}, a r^{3}, a r^{2}, a r, a, \frac{a}{r}, \frac{a}{r^{2}}, \frac{a}{r^{3}}, \frac{a}{r^{4}}, \frac{a}{r^{5}}
6th term of GP=2GP =2
a=2\because a=2
\therefore Product of first 11 terms
=ar5×ar4×ar3×ar2×ar×a×ar×ar2×ar3×ar4×ar5=a r^{5} \times a r^{4} \times a r^{3} \times a r^{2} \times a r \times a \times \frac{a}{r} \times \frac{a}{r^{2}} \times \frac{a}{r^{3}} \times \frac{a}{r^{4}} \times \frac{a}{r^{5}}
=a11=211=2048=a^{11}=2^{11}=2048