Question
Question: If $(5x)^{\ln 5} = (4y)^{\ln 4}$ and $4^{\ln x} = 5^{\ln y}$, then $y - x$ is equal to...
If (5x)ln5=(4y)ln4 and 4lnx=5lny, then y−x is equal to
Answer
1/20
Explanation
Solution
Solution:
We are given:
(5x)ln5=(4y)ln4and4lnx=5lny.Step 1: Taking logarithms on the first equation:
ln[(5x)ln5]=ln[(4y)ln4]⟹ln5⋅(ln5+lnx)=ln4⋅(ln4+lny).Step 2: Rewrite the second equation using logarithms:
4lnx=e(ln4)(lnx)and5lny=e(ln5)(lny),so equate exponents:
ln4⋅lnx=ln5⋅lny⟹lny=ln5ln4lnx.Step 3: Substitute lny into the first equation:
ln5(ln5+lnx)=ln4(ln4+ln5ln4lnx).Expanding:
ln52+ln5⋅lnx=ln42+ln5ln42lnx.Step 4: Bring like terms together:
ln5⋅lnx−ln5ln42lnx=ln42−ln52.Factor lnx:
(ln5−ln5ln42)lnx=ln42−ln52.Write the left factor with a common denominator:
ln5ln52−ln42lnx=ln42−ln52.Notice that ln42−ln52=−(ln52−ln42). So,
ln5ln52−ln42lnx=−(ln52−ln42).Dividing both sides by (ln52−ln42)=0:
ln5lnx=−1⟹lnx=−ln5.Thus,
x=e−ln5=51.Step 5: Substitute x back into lny=ln5ln4lnx:
lny=ln5ln4(−ln5)=−ln4⟹y=e−ln4=41.Step 6: Find y−x:
y−x=41−51=205−4=201.