Solveeit Logo

Question

Question: If $(5x)^{\ln 5} = (4y)^{\ln 4}$ and $4^{\ln x} = 5^{\ln y}$, then $y - x$ is equal to...

If (5x)ln5=(4y)ln4(5x)^{\ln 5} = (4y)^{\ln 4} and 4lnx=5lny4^{\ln x} = 5^{\ln y}, then yxy - x is equal to

Answer

1/20

Explanation

Solution

Solution:

We are given:

(5x)ln5=(4y)ln4and4lnx=5lny.(5x)^{\ln 5} = (4y)^{\ln 4} \quad \text{and} \quad 4^{\ln x} = 5^{\ln y}.

Step 1: Taking logarithms on the first equation:

ln[(5x)ln5]=ln[(4y)ln4]ln5(ln5+lnx)=ln4(ln4+lny).\ln\left[(5x)^{\ln 5}\right] = \ln\left[(4y)^{\ln 4}\right] \quad \Longrightarrow \quad \ln 5\cdot (\ln5 + \ln x)=\ln 4\cdot (\ln4 + \ln y).

Step 2: Rewrite the second equation using logarithms:

4lnx=e(ln4)(lnx)and5lny=e(ln5)(lny),4^{\ln x} = e^{(\ln 4)(\ln x)} \quad \text{and} \quad 5^{\ln y} = e^{(\ln 5)(\ln y)},

so equate exponents:

ln4lnx=ln5lnylny=ln4ln5lnx.\ln 4\cdot \ln x = \ln 5\cdot \ln y \quad \Longrightarrow \quad \ln y = \frac{\ln 4}{\ln 5}\ln x.

Step 3: Substitute lny\ln y into the first equation:

ln5(ln5+lnx)=ln4(ln4+ln4ln5lnx).\ln 5\left(\ln 5 + \ln x\right) = \ln 4\left(\ln 4 + \frac{\ln 4}{\ln 5}\ln x\right).

Expanding:

ln52+ln5lnx=ln42+ln42ln5lnx.\ln5^2 + \ln 5\cdot \ln x = \ln4^2 + \frac{\ln4^2}{\ln5}\ln x.

Step 4: Bring like terms together:

ln5lnxln42ln5lnx=ln42ln52.\ln 5\cdot \ln x - \frac{\ln4^2}{\ln5}\ln x = \ln4^2 - \ln5^2.

Factor lnx\ln x:

(ln5ln42ln5)lnx=ln42ln52.\left(\ln 5 - \frac{\ln4^2}{\ln5}\right)\ln x = \ln4^2 - \ln5^2.

Write the left factor with a common denominator:

ln52ln42ln5lnx=ln42ln52.\frac{\ln5^2 - \ln4^2}{\ln5}\ln x = \ln4^2 - \ln5^2.

Notice that ln42ln52=(ln52ln42)\ln4^2 - \ln5^2 = -(\ln5^2 - \ln4^2). So,

ln52ln42ln5lnx=(ln52ln42).\frac{\ln5^2 - \ln4^2}{\ln5}\ln x = -(\ln5^2 - \ln4^2).

Dividing both sides by (ln52ln42)0(\ln5^2 - \ln4^2) \neq 0:

lnxln5=1lnx=ln5.\frac{\ln x}{\ln5} = -1 \quad \Longrightarrow \quad \ln x = -\ln 5.

Thus,

x=eln5=15.x = e^{-\ln 5} = \frac{1}{5}.

Step 5: Substitute xx back into lny=ln4ln5lnx\ln y = \frac{\ln 4}{\ln 5}\ln x:

lny=ln4ln5(ln5)=ln4y=eln4=14.\ln y = \frac{\ln 4}{\ln 5}(-\ln 5) = -\ln 4 \quad \Longrightarrow \quad y = e^{-\ln 4} = \frac{1}{4}.

Step 6: Find yxy - x:

yx=1415=5420=120.y - x = \frac{1}{4} - \frac{1}{5} = \frac{5-4}{20} = \frac{1}{20}.