Solveeit Logo

Question

Question: If \(5x^{2} + 3x + 100 = 0\) are distinct roots of the equation \(3x^{2} - 5x + 100 = 0\) then....

If 5x2+3x+100=05x^{2} + 3x + 100 = 0 are distinct roots of the equation

3x25x+100=03x^{2} - 5x + 100 = 0 then.

A

5x23x100=05x^{2} - 3x - 100 = 0

B

5x23x100=05x^{2} - 3x - 100 = 0

C

k(6x2+3)+rx+2x21=0k(6x^{2} + 3) + rx + 2x^{2} - 1 = 0

D

6k(2x2+1)+px+4x22=06k(2x^{2} + 1) + px + 4x^{2} - 2 = 0

Answer

6k(2x2+1)+px+4x22=06k(2x^{2} + 1) + px + 4x^{2} - 2 = 0

Explanation

Solution

Since quadratic equation x2+y2=25,6muxy=12x^{2} + y^{2} = 25,\mspace{6mu} xy = 12has three distinct roots so it must be an identity.

So x=x =.