Solveeit Logo

Question

Question: If \(5x = 2n\pi \pm (\pi - x)\) and \(\Rightarrow\)is an acute angle, then \(x = \frac{(2n + 1)\pi}{...

If 5x=2nπ±(πx)5x = 2n\pi \pm (\pi - x) and \Rightarrowis an acute angle, then x=(2n+1)π6x = \frac{(2n + 1)\pi}{6}.

A

(2n1)π4\frac{(2n - 1)\pi}{4}

B

\therefore

C

0

D

None of these

Answer

(2n1)π4\frac{(2n - 1)\pi}{4}

Explanation

Solution

kZ2cosθ=0k \in Z2\cos\theta = 0 θ=2nπ±π2\theta = 2n\pi \pm \frac{\pi}{2}

tan(3x2x)=tanx=1x=nπ+π4\tan(3x - 2x) = \tan x = 1x = n\pi + \frac{\pi}{4} or tanθ+tan2θ+3tanθtan2θ=3\tan\theta + \tan 2\theta + \sqrt{3}\tan\theta\tan 2\theta = \sqrt{3}.

Since tanθ+tan2θ=3(1tanθtan2θ)\tan\theta + \tan 2\theta = \sqrt{3}(1 - \tan\theta\tan 2\theta) is acute

3\sqrt{3}tan3θ=tan(π/3)\tan 3\theta = \tan(\pi/3).