Solveeit Logo

Question

Question: If \(5\pi - \alpha\), then the value of x other than 0 lying between \(\therefore\)is....

If 5πα5\pi - \alpha, then the value of x other than 0 lying between \thereforeis.

A

3sinx+cosx=4\sqrt{3}\sin x + \cos x = 4

B

asinx+bcosx=ca\sin x + b\cos x = c

C

a=3,b=1,c=4a = \sqrt{3},b = 1,c = 4

D

a2+b2=3+1=4<c2a^{2} + b^{2} = 3 + 1 = 4 < c^{2}

Answer

a=3,b=1,c=4a = \sqrt{3},b = 1,c = 4

Explanation

Solution

3sin(sinx2)(sinx2)=03\sin(\sin x - 2) - (\sin x - 2) = 0

(3sinx1)(sinx2)=0\Rightarrow (3\sin x - 1)(\sin x - 2) = 0

\Rightarrow sinx=13 or 2\sin x = \frac{1}{3}\text{ or 2} \Rightarrow sinx=13\sin x = \frac{1}{3}

or sinx2\because\sin x \neq 2

sin113=α0<α<π2\sin^{- 1}\frac{1}{3} = \alpha 0 < \alpha < \frac{\pi}{2}

For x lying between 0 and [0, 5π]\lbrack 0,\ 5\pi\rbrack, we get α,\alpha,.

Trick : Check with options.