Solveeit Logo

Question

Question: If 5f(x) + \(3f\left( \frac{1}{x} \right)\) = x + 2 and y = x f(x) then \(\left( \frac{dy}{dx} \righ...

If 5f(x) + 3f(1x)3f\left( \frac{1}{x} \right) = x + 2 and y = x f(x) then (dydx)x=1\left( \frac{dy}{dx} \right)_{x = 1} is equal to –

A

14

B

78\frac{7}{8}

C

1

D

None of these

Explanation

Solution

Q 5f(x) + 3f(1x)3f\left( \frac{1}{x} \right) = x + 2 .....(i)

Replacing x by 1x\frac{1}{x} in (i),

5f(1x)+3f(x)5f\left( \frac{1}{x} \right) + 3f(x) = 1x\frac{1}{x}+ 2 ....(ii)

On solving equation (i) and (ii), we get,

16 f(x) = 5x – 3x\frac{3}{x}+ 4,

\ 16 f ¢(x) = 5 + 3x2\frac{3}{x^{2}}

Q y = xf(x)

̃ dydx\frac{dy}{dx} = f(x) + xf ¢(x)

= 116(5x3x+4)+x.116(5+3x2)\frac{1}{16}(5x–\frac{3}{x} + 4) + x.\frac{1}{16}(5 + \frac{3}{x^{2}})

at x = 1, dydx\frac{dy}{dx} = 116\frac{1}{16} (5 – 3 + 4) + 116\frac{1}{16} (5 + 3) = 78\frac{7}{8}