Solveeit Logo

Question

Mathematics Question on Linear Equations

If 5f(x)+4f(1x)=x225f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2, for all x0x \neq 0, and y=9x2f(x)y = 9x^2f(x), then yy is strictly increasing in:

A

(0,15)(15,)(0, \frac{1}{\sqrt{5}}) \cup (\frac{1}{\sqrt{5}}, \infty)

B

(15,0)(15,)(-\frac{1}{\sqrt{5}}, 0) \cup (\frac{1}{\sqrt{5}}, \infty)

C

(15,0)(0,15)(-\frac{1}{\sqrt{5}}, 0) \cup (0, \frac{1}{\sqrt{5}})

D

(,15)(0,15)(-\infty, -\frac{1}{\sqrt{5}}) \cup (0, \frac{1}{\sqrt{5}})

Answer

(15,0)(15,)(-\frac{1}{\sqrt{5}}, 0) \cup (\frac{1}{\sqrt{5}}, \infty)

Explanation

Solution

We are given the equation:

5f(x)+4(1x)=x225f(x) + 4 \left(\frac{1}{x}\right) = x^2 - 2

Solving for f(x)f(x):

f(x)=x224x5f(x) = \frac{x^2 - 2 - \frac{4}{x}}{5}

Now, substitute f(x)f(x) into the equation for yy:

y=9x2f(x)=9x2(x224x5)y = 9x^2 f(x) = 9x^2 \left(\frac{x^2 - 2 - \frac{4}{x}}{5}\right)

Simplifying:

y=9x418x236x5y = \frac{9x^4 - 18x^2 - 36x}{5}

Now, differentiate yy with respect to xx:

dydx=15(36x336x36)\frac{dy}{dx} = \frac{1}{5} \left(36x^3 - 36x - 36\right)

Simplifying:

dydx=365(x3x1)\frac{dy}{dx} = \frac{36}{5} \left(x^3 - x - 1\right)

For yy to be strictly increasing, we need dydx>0\frac{dy}{dx} > 0, which implies:

x3x1>0x^3 - x - 1 > 0

Solving the inequality x3x1>0x^3 - x - 1 > 0, we find that the critical points are:

x=±15x = \pm \frac{1}{\sqrt{5}}

Thus, yy is strictly increasing in the intervals:
x(15,0)(15,)x \in \left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)