Solveeit Logo

Question

Mathematics Question on applications of integrals

If 5f(x) + 4f (1x\frac{1}{x}) = 1x\frac{1}{x}+ 3, then 181218\int_{1}^{2} f(x)dx is:

A

10 lln 3 - 6

B

5 lln2 - 6

C

10 lln 2 - 6

D

5 lln 2 - 3

Answer

10 lln 2 - 6

Explanation

Solution

5f(x)+4f(1x)=1x+3......(i)5f(x)+4f(\frac{1}{x})=\frac{1}{x}+3......(i)
Replace x1xx\rightarrow \frac{1}{x}
5f(1x)+4f(x)=x+3.....(ii)5f(\frac{1}{x})+4f(x)=x+3.....(ii)
By (i) and (ii)
9f(x)=5x4x+39f(x)=\frac{5}{x}-4x+3
1812f(x)dx=12(10x8x+6)dx18\int_{1}^{2}f(x)dx=\int_{1}^{2}(\frac{10}{x}-8x+6)dx
1812f(x)dx=18\int_{1}^{2}f(x)dx = 10 ln 2 - 6

So, the correct option is (C): 10 lln 2 - 6