Solveeit Logo

Question

Question: If \(5Cn,\mspace{6mu} 2\mspace{6mu}^{4}C_{n}\mspace{6mu} and\mspace{6mu}^{6}C_{n}\mspace{6mu}\) are ...

If 5Cn,6mu26mu4Cn6muand6mu6Cn6mu5Cn,\mspace{6mu} 2\mspace{6mu}^{4}C_{n}\mspace{6mu} and\mspace{6mu}^{6}C_{n}\mspace{6mu} are in H.P., then n =

A

2

B

15

C

3

D

None of these

Answer

2

Explanation

Solution

Given 15Cn,6mu124Cn,6mu16Cn\frac{1}{5C_{n}},\mspace{6mu}\frac{1}{2^{4}C_{n}},\mspace{6mu}\frac{1}{6C_{n}} are in A.P.

226mu4Cn=15Cn+16Cn\frac{2}{2^{\mspace{6mu} 4}C_{n}} = \frac{1}{5C_{n}} + \frac{1}{6C_{n}}

4n6mun46mu=6mu5n6mun56mu+6mu6n6mun6\frac{\angle 4 - n\mspace{6mu}\angle n}{\angle 4}\mspace{6mu} = \mspace{6mu}\frac{\angle 5 - n\mspace{6mu}\angle n}{\angle 5}\mspace{6mu} + \mspace{6mu}\frac{\angle 6 - n\mspace{6mu}\angle n}{\angle 6}

4n46mu=6mu5n56mu+6mu6n6\frac{\angle 4 - n}{\angle 4}\mspace{6mu} = \mspace{6mu}\frac{\angle 5 - n}{\angle 5}\mspace{6mu} + \mspace{6mu}\frac{\angle 6 - n}{\angle 6}

Multiplying throughout by 64n\frac{\angle 6}{\angle 4 - n}

6 x 5 = 6 x (5 – n) + (6 – n) (5 – n)

⇒ n2- 17n + 30 = 0 ⇒ n = 2, 15.

For n = 15, 4Cn4C_{n} is meaningless, therefore, n = 2 is the only solution.