Solveeit Logo

Question

Question: If [5 sinx] + [cosx] + 6 = 0 then range of f(x) = sinx + \(\sqrt{3}\)cos x, corresponding to the sol...

If [5 sinx] + [cosx] + 6 = 0 then range of f(x) = sinx + 3\sqrt{3}cos x, corresponding to the solution set of the given equation, is (where [.] denotes the greatest integer function)

A

[-2, 0]

B

(−3\sqrt{3}, 0|

C

[−2, 3\sqrt{3})

D

|−2, −3\sqrt{3})

Answer

|−2, −3\sqrt{3})

Explanation

Solution

[5 sinx] + [cosx] = -6

⇒ [5 sinx] = −5, (cosx] = −1

⇒ −5 ≤ 5 sin x < −4, -1 ≤ cos x < 0

⇒ −1 < sin x < 45- \frac { 4 } { 5 }, −1 ≤ cos θ < cos x < 0

π+sin1(45)<x<3π2\pi + \sin ^ { - 1 } \left( \frac { 4 } { 5 } \right) < x < \frac { 3 \pi } { 2 }

Now f(x) = sinx + 3\sqrt { 3 } cosx = 2sin(x+π6)2 \sin \left( x + \frac { \pi } { 6 } \right)

we have, π+π6+sin1(45)<x+π6<3π2+π6\pi + \frac { \pi } { 6 } + \sin ^ { - 1 } \left( \frac { 4 } { 5 } \right) < x + \frac { \pi } { 6 } < \frac { 3 \pi } { 2 } + \frac { \pi } { 6 }

1sin(x+π6)<32- 1 \leq \sin \left( x + \frac { \pi } { 6 } \right) < - \frac { \sqrt { 3 } } { 2 }