Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

If 5log10 1+x+4 log10 1x=log10 11x25 - log_{10}\ \sqrt {1 + x }+ 4\ log_{10 }\ \sqrt {1-x} = log_{10}\ \frac {1}{\sqrt {1-x^2}}, then 100x100 x equals

Answer

Given :
5log101+x+4log101x=log1011x25-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\log_{10}\frac{1}{\sqrt{1-x^2}}

Now, we can also express the equation in the following manner :
5log101+x+4log101x=log10(1+x×1x)15-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=\log_{10}(\sqrt{1+x}\times\sqrt{1-x})^{-1}

5log101+x+4log101x=(1)log10(1+x)+(1)log10(1x)5-\log_{10}\sqrt{1+x}+4\log_{10}\sqrt{1-x}=(-1)\log_{10}(\sqrt{1+x})+(-1)\log_{10}(\sqrt{1-x})

5=log101+x+log101+xlog101x4log101x5=-\log_{10}\sqrt{1+x}+\log_{10}\sqrt{1+x}-\log_{10}\sqrt{1-x}-4\log_{10}\sqrt{1-x}

5=5log101x5=-5\log_{10}\sqrt{1-x}

1x=110\sqrt{1-x}=\frac{1}{10}

Now, by squaring on both sides, we get :
(1x)2=1100(\sqrt{1-x})^2=\frac{1}{100}

x=11100=99100x=1-\frac{1}{100}=\frac{99}{100}

Therefore, 100x=100×99100=99100x=100\times\frac{99}{100}=99
So, the correct answer is 99.