Solveeit Logo

Question

Mathematics Question on Binomial theorem

If 5975^{97} is divided by 5252 ,, then the remainder obtained is

A

33

B

55

C

44

D

00

Answer

55

Explanation

Solution

We know that, 54=625=52×12+15^{4}=625=52\times 12+1 54=52λ+1\Rightarrow 5^{4}=52\lambda +1 , where λ\lambda is a positive integer. (54)24=(52λ+1)24\Rightarrow \left(5^{4}\right)^{24}=\left(52 \lambda + 1\right)^{24} =24C0(52λ)24+24(C1(52λ)23+24C2(52λ)22)++24(C23(52λ)+24C24)= \, \\_{}^{24}C_{0}\left(52 \lambda \right)^{24}+\\_{}^{24}\left(C_{1} \left(52 \lambda \right)^{23} + \\_{}^{24}C_{2} \left(52 \lambda \right)^{22}\right)+\ldots +\\_{}^{24}\left(C_{23} \left(52 \lambda \right) + \\_{}^{24}C_{24}\right) (by binomial theorem) 596=52[24C05223λ24+24C15223λ22++24C23λ]+1\Rightarrow 5^{96}=52\left[\\_{}^{24}C_{0} 52^{23} \lambda ^{24} + \\_{}^{24}C_{1} 52^{23} \lambda ^{22} + \ldots + \\_{}^{24}C_{23} \lambda \right]+1 =(amultipleof52)+1=\left(a \, m u l t i p l e \, o f \, 52\right)+1 On multiplying both sides by 55 , we get 597=5965=5(amultipleof52)+55^{97}=5^{96}\cdot 5=5 \, \left(a \, m u l t i p l e \, o f \, 52\right)+5 Hence, the required remainder is 55 .