Solveeit Logo

Question

Question: If (5 +\(2\sqrt{6}\))<sup>n</sup> = I + ƒ, where I Ī N, n ĪN and 0 £ ƒ \< 1, then I equals –...

If (5 +262\sqrt{6})n = I + ƒ, where I Ī N, n ĪN and 0 £ ƒ < 1, then I equals –

A

1ƒ\frac{1}{ƒ} – ƒ

B

11+ƒ\frac{1}{1 + ƒ} – ƒ

C

11–ƒ\frac{1}{1–ƒ} – ƒ

D

11–ƒ\frac{1}{1–ƒ} + ƒ

Answer

11–ƒ\frac{1}{1–ƒ} – ƒ

Explanation

Solution

We have I + ƒ = (5 + 262\sqrt{6})n

Let G = (5 –262\sqrt{6})n

0 < 5 – 262\sqrt{6}< 1 Ž 0 < (5 –262\sqrt{6})n < 1 Ž 0 < G < 1

I + ƒ + G = (5 +262\sqrt{6})n + (5 – 262\sqrt{6})n

= 2 [nC0 5n + nC2 5n–2 (262\sqrt{6})2 + ….] Ī Z

Ž ƒ + G Ī Z (Q I Ī Z)

Now 0 £ ƒ < 1, 0 < G < 1 Ž 0 < ƒ + G < 2

Ž ƒ + G = 1

Now I = (I + ƒ) – ƒ = (5 +262\sqrt{6})n –ƒ

= 1(526)n\frac{1}{(5–2\sqrt{6})^{n}} – ƒ = 1G\frac{1}{G} – ƒ

= 11ƒ\frac{1}{1 - ƒ} – ƒ (Q ƒ + G = 1)