Question
Question: If (5, 12) and (24, 7) are the foci of an ellipse passing through the origin, then the eccentricity ...
If (5, 12) and (24, 7) are the foci of an ellipse passing through the origin, then the eccentricity of the conic is
A. 12386 B. 13386 C. 25386 D. 38386
Solution
Hint:To find the answer, we find the distance between foci. Then we find the sum of distances from foci and then find the eccentricity by using relevant formulae.
Complete step-by-step answer:
And let P (0, 0) be a point on the conic.
SP = (5−0)2+(12−0)2=25+144 = 13
S′P = (24−0)2+(7−0)2=576+49 = 25
SS′ = (24−5)2+(7−12)2=192+52=386
If the conic is an ellipse, then
SP + S′P = 2a and SS′ = 2ae, where a is the foci and e is the eccentricity
e = SP + S’PSS’
= 13+25386
= 38386
Hence Option D is the correct answer.
Note:The key in solving such types of problems is finding the distance between foci and the sum of distances from foci. And knowing the formulae in ellipse respectively is a crucial step. Distance between two points (x, y) and (a, b) is given by D =(x - a)2+(y - b)2.