Solveeit Logo

Question

Question: If (5, 12) and (24, 7) are the foci of a conic passing through the origin then the eccentricity of c...

If (5, 12) and (24, 7) are the foci of a conic passing through the origin then the eccentricity of conic is-

A

38612\frac{\sqrt{386}}{12}

B

38638\frac{\sqrt{386}}{38}

C

38625\frac{\sqrt{386}}{25}

D

2\sqrt{2}

Answer

38612\frac{\sqrt{386}}{12}

Explanation

Solution

If two foci be S(5, 12) and S¢(24, 7) and it passes through origin O.

Then SO = 25+144\sqrt{25 + 144} = 13 ; S¢O = 576+49\sqrt{576 + 49} = 25 and SS¢ = 386\sqrt{386}

If conic be an ellipse, then SO + S¢O = 2a and SS¢ = 2ae

\ e = SSSO+SO\frac{SS'}{SO + S'O} = 38638\frac{\sqrt{386}}{38}

IF conic be a hyperbola, then

S¢O – SO = 2a and SS¢ = 2ae

\ e = SSSOSO\frac{SS'}{S'O–SO} = 38612\frac{\sqrt{386}}{12}.