Solveeit Logo

Question

Question: If \(4S^{2} + 9S - 9 = 0\) then the general value \(\therefore\)is....

If 4S2+9S9=04S^{2} + 9S - 9 = 0 then the general value \thereforeis.

A

(S+3)(4S3)=0(S + 3)(4S - 3) = 0

B

S=34S = \frac{3}{4}

C

S3S \neq - 3

D

sin2θ=34=sinα\sin 2\theta = \frac{3}{4} = \sin\alpha

Answer

S3S \neq - 3

Explanation

Solution

tan2θ+tan3θ1tan2θtan3θ=13\frac{\tan 2\theta + \tan 3\theta}{1 - \tan 2\theta\tan 3\theta} = \frac{1}{\sqrt{3}}

tan5θ=tanπ6\tan 5\theta = \tan\frac{\pi}{6} \Rightarrow

Dividing by 5θ=nπ+π6θ=(n+16)π55\theta = n\pi + \frac{\pi}{6} \Rightarrow \theta = \left( n + \frac{1}{6} \right)\frac{\pi}{5} on both sides, we get

tan2θ=cotθ\tan 2\theta = \cot\theta

tan2θ=tan (π2θ)\tan 2\theta = \tan\ \left( \frac{\pi}{2} - \theta \right) \Rightarrow

\Rightarrow 1sinθ=1+cosθsinθsinθ+cosθ=1\frac{1}{\sin\theta} = 1 + \frac{\cos\theta}{\sin\theta} \Rightarrow \sin\theta + \cos\theta = 1.