Solveeit Logo

Question

Question: If $4^{\log_{16}4}+9^{\log_39}=10^{\log_x83}$ then x is:...

If 4log164+9log39=10logx834^{\log_{16}4}+9^{\log_39}=10^{\log_x83} then x is:

A

10

B

4

C

-10

D

-4

Answer

10

Explanation

Solution

Solution:

Given

4log164+9log39=10logx83.4^{\log_{16}4}+9^{\log_3 9}=10^{\log_x83}.
  1. Evaluate the first term:
    Since 16=4216=4^2, we have

    log164=ln4ln16=ln42ln4=12.\log_{16}4=\frac{\ln4}{\ln16}=\frac{\ln4}{2\ln4}=\frac{1}{2}.

    Therefore,

    4log164=412=2.4^{\log_{16}4}=4^{\frac{1}{2}}=2.
  2. Evaluate the second term:

    log39=log3(32)=2.\log_3 9 = \log_3 (3^2)=2.

    Hence,

    9log39=92=81.9^{\log_3 9}=9^2=81.
  3. Set up the equation:
    Adding the two terms,

    2+81=83,2+81 =83,

    so the equation becomes:

    83=10logx83.83=10^{\log_x83}.
  4. Solve for xx:
    Taking natural logarithm on both sides,

    ln83=logx83ln10.\ln 83=\log_x83 \cdot \ln 10.

    Using the change of base formula for the logarithm, logx83=ln83lnx\log_x83=\frac{\ln83}{\ln x}, we have:

    ln83=ln83lnxln10.\ln83=\frac{\ln83}{\ln x}\cdot\ln10.

    Cancel ln83\ln83 (since ln830\ln83\neq0):

    1=ln10lnxlnx=ln10.1=\frac{\ln10}{\ln x} \quad\Longrightarrow\quad \ln x=\ln 10.

    Therefore, x=10x=10.