Question
Question: If $4^{\log_{16}4}+9^{\log_39}=10^{\log_x83}$ then x is:...
If 4log164+9log39=10logx83 then x is:
A
10
B
4
C
-10
D
-4
Answer
10
Explanation
Solution
Solution:
Given
4log164+9log39=10logx83.-
Evaluate the first term:
log164=ln16ln4=2ln4ln4=21.
Since 16=42, we haveTherefore,
4log164=421=2. -
Evaluate the second term:
log39=log3(32)=2.Hence,
9log39=92=81. -
Set up the equation:
2+81=83,
Adding the two terms,so the equation becomes:
83=10logx83. -
Solve for x:
ln83=logx83⋅ln10.
Taking natural logarithm on both sides,Using the change of base formula for the logarithm, logx83=lnxln83, we have:
ln83=lnxln83⋅ln10.Cancel ln83 (since ln83=0):
1=lnxln10⟹lnx=ln10.Therefore, x=10.