Solveeit Logo

Question

Mathematics Question on Straight lines

If 4a2+9b2-c2+12ab=0, then the family of straight lines ax+by+c=0 is concurrent at

A

(2,3)or(-2,-3)

B

(-2,3)or(2,-3)

C

(3,2)or(-3,2)

D

(-3,2)or(2,3)

Answer

(2,3)or(-2,-3)

Explanation

Solution

The correct answer is option (A) : (2,3)or(-2,-3)
4a2+9b2+12abc2=04a^2+9b^2+12ab-c^2=0
(2a+3b)2c2=0\Rightarrow (2a+3b)^2-c^2=0
(2a+3b+c)(2a+3bc)=0\Rightarrow (2a+3b+c)(2a+3b-c)=0
(2a+3b+c)=0or(2a+3bc)=0\Rightarrow (2a+3b+c) =0 \,\,or\,\,(2a+3b-c)=0
ax+by+c=0\therefore ax+by+c=0 passes through the points (2,3) and (-2,-3)