Solveeit Logo

Question

Mathematics Question on Horizontal and vertical lines

If 4a2+b2+2c2+4ab6ac3bc=04a^2 + b^2 + 2c^2 + 4ab - 6ac - 3bc = 0, the family of lines ax+by+c=0ax + by + c = 0 is concurrent at one or the other of the two points-

A

(1,12),(2,1)\left( - 1, - \frac{1}{2}\right), \left(-2,-1\right)

B

(1,1),(2,12)\left(-1,-1\right) , \left( - 2 , - \frac{1}{2}\right)

C

(1,2),(12,1)\left(-1, 2 \right) , \left( \frac{1}{2} , -1 \right)

D

(1,2),(12,1)\left(1, 2 \right) , \left( \frac{1}{2} , -1 \right)

Answer

(1,12),(2,1)\left( - 1, - \frac{1}{2}\right), \left(-2,-1\right)

Explanation

Solution

4a2+b2+2c2+4ab6ac3bc4 a^{2}+b^{2}+2 c^{2}+4 a b-6 a c-3 b c
(2a+b)23(2a+b)c+2c2=0\equiv(2 a+ b)^{2}-3(2 a+ b) c+2 c^{2}=0
(2a+b2c)(2a+bc)=0\Rightarrow(2 a+b-2 c)(2 a+ b -c)=0
c=2a+b\Rightarrow c=2 a+b or c=a+12bc=a+\frac{1}{2} b
The equation of the family of lines is
a(x+2)+b(y+1)=0a(x+2)+b(y+1)=0
or a(x+1)+b(y+12)=0a(x+1)+b\left(y+\frac{1}{2}\right)=0
giving the point of concurrence (2,1)(-2,-1)
or (1,12)\left(-1,-\frac{1}{2}\right)
a(x+2)+b(y+1)=0a(x+2)+b(y+1)=0
or a(x+1)+b(y+12)=0a(x+1) +b\left(y+\frac{1}{2}\right)=0
giving the point of concurrence
(2,1)(-2,-1) or (1,12)\left(-1,-\frac{1}{2}\right)