Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

If 44b - 3a = 22b + c = 8c - a and a + b + c = 11 , then find the value of 4(1ab+1bc+1ca)4(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca})

A

119\frac{11}{9}

B

911\frac{9}{11}

C

65\frac{6}{5}

D

56\frac{5}{6}

Answer

119\frac{11}{9}

Explanation

Solution

44b-3a = 22b+c = 8c-a
22(4b-3a) = 22b+c = 23(c-a)
28b-6a = 22b+c = 23c-3a
28b-6a = 23c-3a
8b - 6a = 3c - 3a
8b = 3a + 3c ........ (1)
22b+c = 23c-3a
2b + c = 3c - 3a
3a + 2b = 2c ........ (2)
28b-6a = 22b+c
8b - 6a = 2b + c
6b = 6a + c ....... (3)
From (1) and (2):
8b = 2c - 2b + 3c => 10b = 5c => c = 2b =>b = c/2
From (1) and (3):
8b = 3a + 3 (6b - 6a) => 15a = 10b => 3a = 2b =>a = 2b/3 = c/3
a + b + c = 11
(c/3) + (c/2) + c = 11
c = 6, b = 3 and a = 2
Value of 4[1ab+1bc+1ac]4[\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}]
=4[1ab+1bc+1ac]=4[\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}]
=4[16+118+112]=4[\frac{1}{6}+\frac{1}{18}+\frac{1}{12}]
=4[6+2+336]=4[\frac{6+2+3}{36}]
=119=\frac{11}{9}
So, the correct option is (A) : 119\frac{11}{9}