Solveeit Logo

Question

Mathematics Question on Sequence and series

If 4x=16y=64z,{{4}^{x}}={{16}^{y}}={{64}^{z}}, then

A

x, y, zx,\text{ }y,\text{ }z are in G.P.G.P.

B

x, y, zx,\text{ }y,\text{ }z are in A.P.A.P.

C

1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in G.P.G.P.

D

1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.P.A.P.

Answer

1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in A.P.A.P.

Explanation

Solution

Given, 4x=16y=64z{{4}^{x}}={{16}^{y}}={{64}^{z}}
\Rightarrow 22x=24y=26z{{2}^{2x}}={{2}^{4y}}={{2}^{6z}}
\Rightarrow 2x=4y=6z2x=4y=6z
\Rightarrow x=2y=3zx=2y=3z
\Rightarrow x6=y3=z2=k\frac{x}{6}=\frac{y}{3}=\frac{z}{2}=k
\Rightarrow x=6k,y=3k,z=2kx=6k,\,y=3k,\,z=2k
Let 1x,1y,1z\frac{1}{x},\frac{1}{y},\frac{1}{z} are in AP.
\Rightarrow 16k,13k,12k\frac{1}{6k},\frac{1}{3k},\frac{1}{2k} are in AP.
\Rightarrow 2.13k=16k+12k=46k2.\frac{1}{3k}=\frac{1}{6k}+\frac{1}{2k}=\frac{4}{6k}
\Rightarrow 23k=23k\frac{2}{3k}=\frac{2}{3k}