Solveeit Logo

Question

Question: If \(4\tan \theta =3\) then evaluate \(\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta ...

If 4tanθ=34\tan \theta =3 then evaluate 4sinθcosθ4sinθ+cosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }

Explanation

Solution

In this problem we need to calculate the value of 4sinθcosθ4sinθ+cosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } where 4tanθ=34\tan \theta =3. We will calculate the value of tanθ\tan \theta by dividing the given equation 4tanθ=34\tan \theta =3 with 44 on both sides. Now use the basic trigonometric definition of tanθ\tan \theta which is Adjacent Side to θOpposite side to θ\dfrac{\text{Adjacent Side to }\theta }{\text{Opposite side to }\theta } and construct a triangle by comparing the value of tanθ\tan \theta we have. After we will calculate the remaining side of the triangle by using the Pythagoras theorem which is hyp=opp2+adj2hyp=\sqrt{op{{p}^{2}}+ad{{j}^{2}}}. Now we will calculate the values of remaining trigonometric ratios like sinθ\sin \theta , cosθ\cos \theta by using their basic trigonometric definitions. To find the value of the given expression 4sinθcosθ4sinθ+cosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } we will substitute the calculated values of sinθ\sin \theta , cosθ\cos \theta in the given expression and simplify the equation.

Complete step-by-step answer:
Given that 4tanθ=34\tan \theta =3.
Dividing the above equation with 44 on both sides, then we will get
tanθ=34\tan \theta =\dfrac{3}{4}
We have the basic definition of the trigonometric ratio tanθ\tan \theta as Adjacent Side to θOpposite side to θ\dfrac{\text{Adjacent Side to }\theta }{\text{Opposite side to }\theta }. Equating the both the values, then we will get
Adjacent side to θ=3\text{Adjacent side to }\theta =3, Opposite side to θ=4\text{Opposite side to }\theta =4.
We can construct a triangle with the above data as

From Pythagoras theorem we can write that
hyp=opp2+adj2hyp=\sqrt{op{{p}^{2}}+ad{{j}^{2}}}
Substituting the known values in the above equation, then we will get
hyp=32+42 hyp=9+16 hyp=25 hyp=5 \begin{aligned} & hyp=\sqrt{{{3}^{2}}+{{4}^{2}}} \\\ & \Rightarrow hyp=\sqrt{9+16} \\\ & \Rightarrow hyp=\sqrt{25} \\\ & \Rightarrow hyp=5 \\\ \end{aligned}
From the basic definitions of the trigonometry the value of sinθ\sin \theta and cosθ\cos \theta will be given by
sinθ=Opposite side to θHypotenuse\sin \theta =\dfrac{\text{Opposite side to }\theta }{\text{Hypotenuse}}, cosθ=Adjacent side to θHypotenuse\cos \theta =\dfrac{\text{Adjacent side to }\theta }{\text{Hypotenuse}}
Substituting the values, we have in the above equation, then we will get
sinθ=35\sin \theta =\dfrac{3}{5}, cosθ=45\cos \theta =\dfrac{4}{5}
We have the expression 4sinθcosθ4sinθ+cosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }.
Substituting the values sinθ=35\sin \theta =\dfrac{3}{5}, cosθ=45\cos \theta =\dfrac{4}{5} in the above expression, then we will get
4sinθcosθ4sinθ+cosθ=4(35)454(35)+45\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{4\left( \dfrac{3}{5} \right)-\dfrac{4}{5}}{4\left( \dfrac{3}{5} \right)+\dfrac{4}{5}}
Simplifying the above equation by using the mathematical operations, then we will have
4sinθcosθ4sinθ+cosθ=12545125+45 4sinθcosθ4sinθ+cosθ=124512+45 4sinθcosθ4sinθ+cosθ=816 4sinθcosθ4sinθ+cosθ=12 \begin{aligned} & \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{\dfrac{12}{5}-\dfrac{4}{5}}{\dfrac{12}{5}+\dfrac{4}{5}} \\\ & \Rightarrow \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{\dfrac{12-4}{5}}{\dfrac{12+4}{5}} \\\ & \Rightarrow \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{8}{16} \\\ & \therefore \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{1}{2} \\\ \end{aligned}

Note: We can also follow another simple method to get the required solution. Consider the given expression which is 4sinθcosθ4sinθ+cosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }. Divide both numerator and denominator with cosθ\cos \theta , then we will get
4sinθcosθ4sinθ+cosθ=4sinθcosθcosθ4sinθ+cosθcosθ\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{\dfrac{4\sin \theta -\cos \theta }{\cos \theta }}{\dfrac{4\sin \theta +\cos \theta }{\cos \theta }}
Simplifying the above equation by using mathematical operations, then we will get
4sinθcosθ4sinθ+cosθ=4tanθ14tanθ+1\dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{4\tan \theta -1}{4\tan \theta +1}
We have the value 4tanθ=34\tan \theta =3. Substituting this value in the above equation, then we will get
4sinθcosθ4sinθ+cosθ=313+1 4sinθcosθ4sinθ+cosθ=24 4sinθcosθ4sinθ+cosθ=12 \begin{aligned} & \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{3-1}{3+1} \\\ & \Rightarrow \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{2}{4} \\\ & \therefore \dfrac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta }=\dfrac{1}{2} \\\ \end{aligned}
From both the methods we got the same result.