Solveeit Logo

Question

Question: If \(4\cos \theta = 11\sin \theta \), find value of \(\dfrac{{11\cos \theta - 7\sin \theta }}{{11\co...

If 4cosθ=11sinθ4\cos \theta = 11\sin \theta , find value of 11cosθ7sinθ11cosθ+7sinθ\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}.

Explanation

Solution

We can substitute the value of cosθ\cos \theta from4cosθ=11sinθ4\cos \theta = 11\sin \theta in terms of sinθ\sin \theta in 11cosθ7sinθ11cosθ+7sinθ\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} in order to find the value of 11cosθ7sinθ11cosθ+7sinθ\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} or we can do the vice versa, that is, we can substitute the value of sinθ\sin \theta from 4cosθ=11sinθ4\cos \theta = 11\sin \theta in terms of cosθ\cos \theta .

Complete step-by-step answer:
We are given that 4cosθ=11sinθ4\cos \theta = 11\sin \theta and we are required to find the value of 11cosθ7sinθ11cosθ+7sinθ\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}.
Since, 4cosθ=11sinθ4\cos \theta = 11\sin \theta , we get
4cosθ=11sinθ cosθ=114sinθ  \Rightarrow 4\cos \theta = 11\sin \theta \\\ \Rightarrow \cos \theta = \dfrac{{11}}{4}\sin \theta \\\ ..(1)\left( 1 \right)
Now we will substitute this value of cosθ\cos \theta from equation 11 in 11cosθ7sinθ11cosθ+7sinθ\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }}. That is,
11cosθ7sinθ11cosθ+7sinθ 11(114sinθ)7sinθ11(114sinθ)+7sinθ (1214sinθ)7sinθ(1214sinθ)+7sinθ 121sinθ28sinθ121sinθ+28sinθ  \Rightarrow \dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} \\\ \Rightarrow \dfrac{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) - 7\sin \theta }}{{11\left( {\dfrac{{11}}{4}\sin \theta } \right) + 7\sin \theta }} \\\ \Rightarrow \dfrac{{\left( {\dfrac{{121}}{4}\sin \theta } \right) - 7\sin \theta }}{{\left( {\dfrac{{121}}{4}\sin \theta } \right) + 7\sin \theta }} \\\ \Rightarrow \dfrac{{121\sin \theta - 28\sin \theta }}{{121\sin \theta + 28\sin \theta }} \\\
On simplifying this and taking out sinθ\sin \theta common from both numerator and denominator, we will get
sinθ(12128)sinθ(121+28)\Rightarrow \dfrac{{\sin \theta \left( {121 - 28} \right)}}{{\sin \theta \left( {121 + 28} \right)}}
By cancelling, sinθ\sin \theta from both numerator and denominator, we will get
(12128)(121+28) 93149  \Rightarrow \dfrac{{\left( {121 - 28} \right)}}{{\left( {121 + 28} \right)}} \\\ \Rightarrow \dfrac{{93}}{{149}} \\\
Hence, the value of 11cosθ7sinθ11cosθ+7sinθ=93149\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{93}}{{149}}.
Therefore the answer is 93149\dfrac{{93}}{{149}}.

Note: We could have also substituted the value of sinθ\sin \theta in terms of cosθ\cos \theta and the answer would have been the same.
Alternate Method:
4cosθ=11sinθ4\cos \theta = 11\sin \theta
Dividing by 44 on both sides, we get
cosθ=114sinθ\cos \theta = \dfrac{{11}}{4}\sin \theta
Taking sinθ\sin \theta to left hand side, we get
cosθsinθ=114\dfrac{{\cos \theta }}{{\sin \theta }} = \dfrac{{11}}{4}
Now, multiply by 1111 and divide by 77on both sides, we will get
11cos7sin=11×117×4=12128\dfrac{{11\cos }}{{7\sin }} = \dfrac{{11 \times 11}}{{7 \times 4}} = \dfrac{{121}}{{28}}
Applying Numeratordenominatornumerator+denominator\dfrac{{Numerator - denominator}}{{numerator + denominator}}on both sides, we will get
11cosθ7sinθ11cosθ+7sinθ=12128121+28=93149\dfrac{{11\cos \theta - 7\sin \theta }}{{11\cos \theta + 7\sin \theta }} = \dfrac{{121 - 28}}{{121 + 28}} = \dfrac{{93}}{{149}}
Hence, the answer is 93149\dfrac{{93}}{{149}}.