Solveeit Logo

Question

Question: If \[{{4}^{2{{\sin }^{2}}x}}\times {{16}^{{{\tan }^{2}}x}}\times {{2}^{4{{\cos }^{2}}x}}=256\]such t...

If 42sin2x×16tan2x×24cos2x=256{{4}^{2{{\sin }^{2}}x}}\times {{16}^{{{\tan }^{2}}x}}\times {{2}^{4{{\cos }^{2}}x}}=256such that 0A.\[π30A. \[\dfrac{\pi }{3}
B. π4\dfrac{\pi }{4}
C. π12\dfrac{\pi }{12}
D. π24\dfrac{\pi }{24}

Explanation

Solution

First we will convert both LHS and RHS in powers of 2, it will be like (22)2sin2x×(24)tan2x×(2)4cos2x=256=28{{({{2}^{2}})}^{2{{\sin }^{2}}x}}\times {{({{2}^{4}})}^{{{\tan }^{2}}x}}\times {{(2)}^{4{{\cos }^{2}}x}}=256={{2}^{8}}, now using property
(xa)b=xa×b{{({{x}^{a}})}^{b}}={{x}^{a\times b}}
We will write it as (2)4sin2x×(2)4tan2x×(2)4cos2x=28{{(2)}^{4{{\sin }^{2}}x}}\times {{(2)}^{4{{\tan }^{2}}x}}\times {{(2)}^{4{{\cos }^{2}}x}}={{2}^{8}}
Now using property (xa)×(xb)=xa+b({{x}^{a}})\times ({{x}^{b}})={{x}^{a+b}}
We will write as (2)4sin2x+4tan2x+4cos2x=28{{(2)}^{4{{\sin }^{2}}x+4{{\tan }^{2}}x+4{{\cos }^{2}}x}}={{2}^{8}} , now equating powers
4sin2x+4tan2x+4cos2x=84{{\sin }^{2}}x+4{{\tan }^{2}}x+4{{\cos }^{2}}x=8 which will look like sin2x+tan2x+cos2x=2{{\sin }^{2}}x+{{\tan }^{2}}x+{{\cos }^{2}}x=2
Now putting sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 we get 1+tan2x=21+{{\tan }^{2}}x=2, so we get the value of x.

Complete step-by-step answer:
Given an expression 42sin2x×16tan2x×24cos2x=256{{4}^{2{{\sin }^{2}}x}}\times {{16}^{{{\tan }^{2}}x}}\times {{2}^{4{{\cos }^{2}}x}}=256 and it is such that range of 0<x<π20 < x < \dfrac{\pi }{2} then we have to find value of x.
First, we will write our Both LHS and RHS in terms of power of 2. It will look like
(22)2sin2x×(24)tan2x×(2)4cos2x=256=28{{({{2}^{2}})}^{2{{\sin }^{2}}x}}\times {{({{2}^{4}})}^{{{\tan }^{2}}x}}\times {{(2)}^{4{{\cos }^{2}}x}}=256={{2}^{8}}, now using property (xa)b=xa×b{{({{x}^{a}})}^{b}}={{x}^{a\times b}}
On applying this property expression will look like (2)4sin2x×(2)4tan2x×(2)4cos2x=28{{(2)}^{4{{\sin }^{2}}x}}\times {{(2)}^{4{{\tan }^{2}}x}}\times {{(2)}^{4{{\cos }^{2}}x}}={{2}^{8}}
Now we can use property (xa)×(xb)=xa+b({{x}^{a}})\times ({{x}^{b}})={{x}^{a+b}} this, our expression will convert to
(2)4sin2x+4tan2x+4cos2x=28{{(2)}^{4{{\sin }^{2}}x+4{{\tan }^{2}}x+4{{\cos }^{2}}x}}={{2}^{8}}, now both LHS and RHS are converted in terms of powers of 2 so we can simply equate the powers and write it as 4sin2x+4tan2x+4cos2x=84{{\sin }^{2}}x+4{{\tan }^{2}}x+4{{\cos }^{2}}x=8.
Dividing the expression by 4 we get it as sin2x+tan2x+cos2x=2{{\sin }^{2}}x+{{\tan }^{2}}x+{{\cos }^{2}}x=2
As we know sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1putting it in equation we got 1+tan2x=21+{{\tan }^{2}}x=2
Which gives tan2x=1{{\tan }^{2}}x=1, hence tanx=1,1\tan x=1,-1. So, x equals to π4\dfrac{\pi }{4}or π4-\dfrac{\pi }{4} but range of x is 0<x<π20 < x < \dfrac{\pi }{2}
So, value of x will be equals to π4\dfrac{\pi }{4}

So, the correct answer is “Option B”.

Note: Most of the student did mistake while applying formula (xa)×(xb)=xa+b({{x}^{a}})\times ({{x}^{b}})={{x}^{a+b}}
They apply it as (xa)×(xb)=xa×b({{x}^{a}})\times ({{x}^{b}})={{x}^{a\times b}} , similar mistake is also repeated while applying formula (xa)b=xa×b{{({{x}^{a}})}^{b}}={{x}^{a\times b}} and wrong applied as (xa)b=xa+b{{({{x}^{a}})}^{b}}={{x}^{a+b}}. If the range of x is not given in the question then we have to consider all the possible solution for tan2x=1{{\tan }^{2}}x=1