Solveeit Logo

Question

Mathematics Question on Conic sections

If 3x+y+k=03x + y + k = 0 is a tangent to the circle x2+y2=10x^2+y^2=10 the values of k are,

A

±5\pm{5}

B

±7\pm{7}

C

±9\pm{9}

D

±10\pm{10}

Answer

±10\pm{10}

Explanation

Solution

Given, line is 3x+y+k=03x + y + k = 0
y=3xk\Rightarrow \, y = - 3x - k
And equation of circle is x2+y2=10x^2 + y^2 = 10
Here, a2=10,m=3,c=ka^2 = 10, m = - 3, c = - k
If given line touches the circle , then length of intercept =0=0
2a2(1+m2)c21+m2=0\Rightarrow 2\sqrt{\frac{a^{2} \left(1+m^{2}\right)-c^{2}}{1+m^{2}}} = 0
210(1+9)k21+9=0\Rightarrow 2\sqrt{\frac{10 \left(1+9\right) -k^{2}}{1+9}} = 0
100k2=0\Rightarrow \sqrt{100 -k^{2}} =0
100k2=0\Rightarrow 100-k^{2} = 0
k=±10\Rightarrow k = \pm 10
Alternative : If the given line is tangent to the circle, then the length of the perpendicular from the centre upon the line is equal to the radius of the circle.
ie, ax1+by1+ca2+b2=r\left|\frac{ax_{1} + by_{1} +c}{\sqrt{a^{2} +b^{2}}}\right| = r
3×0+6×0+k(3)2+(1)2=10\Rightarrow \left|\frac{3 \times0 + 6 \times0+k}{\sqrt{\left(3\right)^{2}+\left(1\right)^{2}}}\right| = \sqrt{10}
k10=10\Rightarrow \left|\frac{k}{\sqrt{10}}\right| = \sqrt{10}
k=100\Rightarrow k = \sqrt{100}
k=±10\Rightarrow k = \pm 10