Question
Mathematics Question on Conic sections
If 3x+y+k=0 is a tangent to the circle x2+y2=10 the values of k are,
A
±5
B
±7
C
±9
D
±10
Answer
±10
Explanation
Solution
Given, line is 3x+y+k=0
⇒y=−3x−k
And equation of circle is x2+y2=10
Here, a2=10,m=−3,c=−k
If given line touches the circle , then length of intercept =0
⇒21+m2a2(1+m2)−c2=0
⇒21+910(1+9)−k2=0
⇒100−k2=0
⇒100−k2=0
⇒k=±10
Alternative : If the given line is tangent to the circle, then the length of the perpendicular from the centre upon the line is equal to the radius of the circle.
ie, a2+b2ax1+by1+c=r
⇒(3)2+(1)23×0+6×0+k=10
⇒10k=10
⇒k=100
⇒k=±10