Solveeit Logo

Question

Question: If 3<sup>49</sup> (x + iy) = \(\left( \frac{3}{2} + \frac{\sqrt{3}}{2}i \right)^{100}\)and x = ky, t...

If 349 (x + iy) = (32+32i)100\left( \frac{3}{2} + \frac{\sqrt{3}}{2}i \right)^{100}and x = ky, then k is –

A

13\frac{1}{3}

B

3\sqrt{3}

C

3\sqrt{3}

D

13\frac{1}{\sqrt{3}}

Answer

13\frac{1}{\sqrt{3}}

Explanation

Solution

Sol. As, 349 (x + iy) = (32+32i)100\left( \frac{3}{2} + \frac{\sqrt{3}}{2}i \right)^{100}

= (i3(1i32))100\left( i\sqrt{3}\left( \frac{1 - i\sqrt{3}}{2} \right) \right)^{100}

Ž 349 (x + iy) = i100 . 350 . (–w)100

Ž 349 (x + iy) = 350 . w = 350 . (12+i32)\left( - \frac{1}{2} + \frac{i\sqrt{3}}{2} \right)

\ x + iy = – 32\frac{3}{2}+ 332\frac{3\sqrt{3}}{2}i Ž x = –13\frac{1}{\sqrt{3}} y, \ k = –13\frac{1}{\sqrt{3}}

Hence (4) is correct answer.